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Abstract 

This paper presents a Thesis which consists of a study of turbo codes as an error-control Code and the software 
implementation of two different decoders, namely the Maximum a Posteriori (MAP), and soft- Output Viterbi Algorithm 
(SOVA) decoders. Turbo codes were introduced in 1993 by berrouet at [2] and are perhaps the most exciting and potentially 
important development in coding theory in recent years. They achieve near- Shannon-Limit error correction performance 
with relatively simple component codes and large interleavers. They can be constructed by concatenating at least two 
component codes in a parallel fashion, separated by an interleaver. The convolutional codes can achieve very good results. In 
order of a concatenated scheme such as a turbo codes to work properly, the decoding algorithm must affect an exchange of 
soft information between component decoders. The concept behind turbo decoding is to pass soft information from the 
output of one decoder to the input of the succeeding one, and to iterate this process several times to produce better decisions. 
Turbo codes are still in the process of standardization but future applications will include mobile communication systems, 
deep space communications, telemetry and multimedia. Finally, we will compare these two algorithms which have less 
complexity and which can produce better performance. 

Keywords: SOVA, MAP, SISO, Turbo Codes, RSC, Channel Model, SNR, BER, LLR, VA 

__________________________________________________________________________________ 

1. Introduction 

One of the aims of this paper will be to show that comprising and analysis for different decoding 
algorithm of turbo codes. There are various iterative decoding techniques. SISO: Soft information, or 
reliability, is crucial information type when turbo-like (iterative) processing of data is considered. 
With the advent of turbo codes in the area of information theory, a lot of attention is given to 
algorithm that can provide such soft reliability values while decoding the original information. There 
are two known soft-input soft-output. The thesis is proposed to work on these two SISO decoding 
Methods: Maximum a Posteriori (MAP) decoding algorithm and SOVA (Soft Output Viterbi 
Algorithm).  

This algorithm is used to minimize the probability of word or sequence error.It works by rejecting the 
least likely path through the trellis at each node, and keeping the most likely one. The removal of 
unlikely paths leaves us, usually, with a single source path further back in the trellis. This path 
selection represents a ‘hard’ decision on the transmitted sequence. The Viterbi decoder estimates a 
maximum likelihood sequence. 

2.  Turbo Codes 

Turbo codes were discovered in 1993 [1] before that, Shannon limit on code performance could only 
be approached with very long code word lengths. There was the problem of decoder complexity as 
well [9]. But we shall analyze in this chapter how decoder complexity can be reduced while 
implementing turbo codes. 

2.1  Encoder 

A parallel concatenated convolutional code is used for encoding turbo codes. In the Fig 1 [1] di = (d1,
d2, d3………..dN) represent the binary input data sequence which is passed into the input of 
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convolutional encoder [14][13] ENC1, as denoted in the original paper. As a result, a coded bit stream 
P
Kx 1 is generated which is then interleaved, often in a pseudo-random pattern. The interleaved data 

sequence is passed to a second convolutional encoder ENC2 and another coded bit stream P
Kx 2 is 

produced. Both of the code bit streams P
Kx 1 and P

Kx 2 are multiplexed (and possibly punctured) to form 

a systematic code bits 5
kx and parity bits p

kx

Fig 1 Turbo Encoder 

2.2  Recursive Systematic Convolutional (RSC) codes 

The convolution (RSC) coder ENC1 and ENC2 used turbo encoder are recursive systematic 
convolutional (RSC) codes. RSC codes are the convolutional codes that use feedback and the uncoded 
data bits are also present in the transmitted code bit sequence. Fig 2 shows a RSC encoder. The shown 
RSC encoder is of rate 1/2, with constraint length k = 3, and a generator polynomial G = {g1, g2} = 
{7, 5}, where g1 is the feedback connectivity and g2 is the output connectivity, in octal notation. An 
RSC component encoder has two output sequences: data: sequence ( )s

N
ssk

s xxxx ,......,, 21= and parity 

sequence ( )p
N

ppp
k xxxx ,......,, 21= .

Fig 2 Recursive Systematic Convolution Code 

 The linear nature of turbo codes (at least, those using BPSK/QPSK modulation) means that the 
minimum Hamming distance of the code can be determined by comparing each Possible code 
wordwith the all–zeroes codeword .This process simplifies analysis of the code somewhat and the 
minimum hamming distance is then equal to the minimum codeweight (number of ‘1’s) which occurs 
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in any codeword.. This is the relationship between the codeweight and the number of codeword with 
that codeweight. An NSC code, however, will return to the all zeroes state after k-1 input zeroes, 
where K is the constraint length of the encoder. The infinite impulse response property of RSC codes 
is complemented in turbo codes by the interleaver between component encoders. The result is a 
composite codeword which will often have a high codeweight.. The pseudo-random nature of most 
turbo code interleavers tends to results in a mapping such that a few combinations of input bit 
positions which cause low codeweight sequences in one RSC component code are permuted into 
combinations of positions which generate low codeweight sequence in the second RSC code. The 
results in such a case are a low composite codeweight. such pseudo-random mapping often lead to 
turbo codes having a low minimum codeweight compared to say , NSC-based convolutional codes, 
resulting in a marked error floor at high SNR. . The distance spectrum of the code as a whole becomes 
significant in determining BER performance, and that the combination of RSC code and pseudo-
random interleaving produces codeword with higher code weights most of the time. The low 
multiplicity of low codeweiught sequence associate with turbo codes sometimes referred to as spectral 
thinning, leads to their good BER performance at low SNR. 

2.3  Interleaver 

An interleaver does the work of re-arranging a sequence of symbols. One use of interleavers in 
communications is that of the symbols interleaver which is used after error control coding and signal 
mapping to ensure that fading bursts affecting blocks of symbols transmitted over the channel are 
broken up at the receiver by a de-interleaver, prior to decoding. Most error control codes work much 
better when errors in the received sequence are spread far apart. Another   use is to place an 
interleaver between component codes in a serially concatenated code scheme for example, between a 
Reed Solomon outer code and a convolutional inner code. In both cases, the interleaver is typically 
implemented as a block interleaver.  

The original data sequence is represented by the sequence of white squares, and the interleaved data 
sequence is represented by the grey squares. Berrou and Glavieux’s original paper [1] featured results 
using a 256*256 interleaver. Turbo code BER performance improves with interleaver length-the so 
called interleaver gain- but the loading and unloading of the interleaver adds a considerable delay to 
the decoding process. This would make a 256*256 interleaver unsuitable for say real time speech 
applications which are delay sensitive. 

2.6  Termination 

Convolutional coding is a continuous process and code words do not have a fixed block length. The 
process can span the whole message rather than a small group of bits. But the turbo codes do have the 
fixed block length which is a determined by the length of the interleaver. Usual procedure is to 
append tail bits to each block of data bits entering one or other of the component encoders, to return it 
to the all zero state at the end of the trellis. This process is called termination  

3. Turbo Decoding 

The turbo decoder consists of two component decoders: DEC1 to decode the sequence from ENC1 and 
DEC2 decode the sequence from ENC2. Both DEC2 are Maximum a posteriori (MAP) decoder. DEC1

takes the received sequence of systematic values s
ky and the received sequence of parity values s

ky
belonging to the first encoder ENC1. The output of the decoder DEC1 is sequence of soft estimates 
EXT1 of the transmitted data bits dk. The EXT1 is called the extrinsic data, in that it does not contain 
any information which was given to DEC1 to DEC2. This information is interleaved, and then passed 
to the second decoder DEC2. The encoder is identical to the used in the encoder. DEC2 takes as its 
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input the interleaved systematic received values s
ky and the sequence of received parity values s

ky 2

from the second encoder ENC2 along with the interleaved from of the extrinsic information EXT1,
provided by the first decoder. The second decoder DEC2 produces as its outputs a set of values which 
when de-interleaved using the inverse form of interleaver, constitutes soft estimates EXT2 of the 
transmitted data sequence dk2. This extrinsic data, formed without the aid of parity bits from the first 
code, is feedback to DEC1. This procedure is repeated in an iterative manner. The iterative decoding 
process adds greatly to the BER performance of turbo codes for example, Berrou and Glavieux 

achieved 
o

b

N
E

atBER 510−= within 0.7 dB of the Shannon limit, using a rate 1/2 turbo code and 18 

decoding iterations. However, after several iterations, the two decoder’s estimates of dk will tend to 
coverage. At this point, DEC2 outputs a value )( kdΛ a log – likelihood representation of the estimate 
of dk.This log- likelihood value takes into account the probability of a transmitted 0 or 1 based on the 
systematic information and parity information from both component codes. More negative values of 

)( kdΛ represent a strong likelihood that the transmitted bit was a 0 and more positive values 

represent a strong likelihood that  it was transmitted bit. )( kdΛ is de- interleaved so that its sequence 
coincides with that of the systematic and first parity streams. Then a simple threshold operation is 
performed on the result, to produce hard decision estimates, dk for the transmitted bits. The decoding 
estimates EXT1 and EXT2, do not necessarily converge to a correct bit decision. If a set of corrupted 
code bits form a pair of error sequences that neither of the decoders is able to correct, then EXT1 and 
EXT2 may either diverge, or converge to incorrect soft value. 
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3.1  The MAP Algorithm 

 The decoding algorithm implemented in DEC1 and DEC2 for iterative decoding need to be analyzed. 
The first one under discussion is the Maximum A posteriori (MAP) algorithm presented in Berrouet.  
al’s original paper [1]. We describe here a derivation of the MAP decoding algorithm for systematic 
convolutional assuming an AWGN channel model, as presented by pietrobo [16]. 

4. Channel models 

In additive white Gaussian noise channel, the received signal is the sum of the transmitted (attenuated 
in some way) and noise with a Gaussian probability density function (pdf) given by: 

 

2

2

1( ) exp
22
np n
σσ π

 
= − 

  (3.26) 

The effect of AWGN is to hinder a detector in the estimate of the transmitted signal based on a 
possibly very weak received signal. Because AWGN affects all electronic circuitry, it almost always 
added to a simulation channel model. 

4.1  Performance of Turbo Codes for Log-MAP 

A simulation program has been written and it gives the performance for and length data. However, it 
takes much time depending on data length, punctured or unpunctured pattern, the Eb/N0 ratios 
provided and the channel models used.An analysis was done on an AWGN channel for rate 1/2 , 
length 1024-bit and log MAP Turbo decoder. 

We observe the gain achieved by the turbo code relative to convolutional code of relative complexity. 
We can clearly see the iterative power of turbo code. 

 
Fig 4 Performance of 400 bit, rate 1/2, log-MAP Turbo Code versus ratefour State Convolutional 

Code over AWGN  
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Fig 5 Performance of 1024 bit, rate 1/2 log-MAP Turbo Code versus rate 1/2 fourstate convolutional 
Code over AWGN. 

 

Fig 6 Performance of 1024 bit, rate 1/2, log-MAP Turbo Code versus rate1/2Fourstate convolutional 
Code over AWGN. 

4.2  Soft Output Virtebri Algorithm (SOVA) 

This algorithm is used to minimize the probability or word or sequence error. It will work by rejecting 
the least likely path through the trellis at each node, and keeping the most likely one. The removal of 
unlikely paths leaves us, usually, with a single source path further back in the trellis. This path 
selection represents a ‘hard’ decision on the transmitted sequence. The Viterbi decoder estimates a 
maximum likelihood sequence. 

Log-Map over AWGN
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It is described here a derivation of MAP decoding algorithm for systematic convolutional codes 
assuming an AWGN channel model, as presented by pietrobon [16]. We start with the ratio of the 
APPs, known as the likelihood Ratio Λ(���) , or its logarithm, called the LLR, as shown below. 
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Where mi
k
,λ the joint probability that data �� = �� and state��� = �� conditioned on the received 

binary sequence NR1 observed from time k = 1 through some time N, is described as  

 
,

1( , )i m N
k k kp d i S m Rλ = = =

 (4.3)                               

NR1 Represents a corrupted code bit sequence after it has been transmitted through the channel, 
demodulated, and presented to the decode in soft decision form. In effect, the MAP algorithm requires 
that the output sequence from the demodulator be presented to the decoder as a block of N bits at a 
time. Let NR1 be written as follows, 

{ }1
1 1 1, ,N k N

k kR R R R−
+=

(4.4) 

To facilitate the use of Bayes’ theorem, Equation (4.2) is partitioned using the letters A, B, C, D and 
Equation (4.3). Equation (4.2) can be written in this form: 

 
, 1

1 1( , , , )i m k N
k k k k kp d i S m R R Rλ −

−= = =  (4.5) 

 A ( , )k kp d i S m= = =  
1

1B = kR −

1and N
k kC R D R += =  

From Bayes theorem 

 
( , , ) ( , , )( , , , )( , , )

( , , ) ( , , )
p B A C D P A C Dp A B C Dp A B C D

p B C D p B C D
= =

 
( , , ) ( , ) ( , )

( , , )
P B A C D P D A C P A C

P B C D
=

(4.6) 

Hence, application of this rule to Equation (4.5) yields 

 
, 1

1 1( , , ) ( , , )i m k N N
k k k k k k k ky p R d i S m R p R d i S m R−

+= = = = =
 

1x ( , , ) ( )N
k k kp d i S m R p R= = ÷  (4.7) 
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Where { }N
Kk

N
K RRR 1, += Equation (4.7) can be expressed in a way that gives greater meaning to the 

probability terms contributing to mi
k
,λ . The three numerator factors on the right side of Equation (4.7) 

will be defined and developed as the forward state metric, the reverse state metric, and the branch 
metric.     

4.3 State metrics and the Branch Metric 

We define the first numerator factor on the right side of Equation (4.7) as the forward state metric at 
time K and state m, and denote it as m

ka Thus for i = 1,0. 

 ���������� = �, �� = �,���� = ���������� = ��∆��� (4.8) 

Notice that dk = i and N
kR are designated as irrelevant, since the assumption the Sk = m implies that 

events before time k are not influenced by observation after time K. In other words, the past is not 
affected by the future, hence ( )1

1
−kRP is independent of the fact that dk = i and sequence N

kR .
However, since the encoder has memory, the encoder state Sk=m is based on the pair, so this term is 
relevant and must be left in the expression. The form of Equation (4.8) is intuitively satisfying, since 
it presents the forward state metric m

ka at time k as  being a probability of the past sequence; that is, 
dependent only on the current state induced by this sequence, and nothing more. This should be 
familiar from the second numerator factor on the right side of Equation (4.7) represents a reverse state 
metric, m

kβ at time k and state m, described below 

 ������� |�� = �, �� = �,��� = P�R���� |S��� = ∫ (i,m)�∆β���∫ (�,�) (4.9) 

Where ∫ ),( mi is the next state, given an input I and state m, and ∫
+

),(
1

mi
kβ is the inverse state metric 

at time k+1 and state ∫ ),( mi . The form of Equation (4.9) is intuitively satisfying since it presents the 

reverse state metric, ∫
+

),(
1

mi
kβ at future time k+1, as being a probability of the future sequence, which 

depends on the state (at future time k). This should be familiar because it creates the basic definition 
of a finite-state machine [17]. We define the third numerator factor on the right side of Equation (4.7) 
as the branch metric at time k and state m. denoted mi

k
,δ Thus we write 

 �(�� = �, �� = �,��)∆���,� (4.10) 

Substituting Equation (4.8) through (4.10) into Equation (4.7) yields the following more compact 
expression for the joint probability: 

( , ),
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a
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∫
=

(4.11) 

Equation (4.11) can be used to express Equation (4.1) and (4.2) as follows: 
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Where Λ����� is the likelihood ratio of the kth data bit and L����� , the logarithm of Λ�����,is the LLR 
of the kth data bit, where the logarithm is generally taken to the base e. 

4.4  Calculating the Forward State Metric 

Starting from Equation (4.8), m
ka can be expressed as the summation of all possible transition 

probabilities from time k-1, as follows  

 

1
1

1 1 1
0

( , ', )m k
k k k k

m j
a p d j S m R S m−

− −
=

= = = =∑∑
 (4.14) 

We can rewrite { }1 2
1 1 1, ,k k

kR as R R− −
− and from Bayes theorem, 

 

1
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( , , ', )m k
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x 1 1 1( , ', )k k k kp d j S m R S m− − −= = =  (4.15a) 

( )
1
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1 1 1 1 1

0

( ( , ) ( , ( , ), )k
k k k k

j
p R S b j m p d j S b j m R−

− − − −
=

= = = =∑
(4.15b) 

Where b(j,m) is the state going backward in time from state m, via the previous branch corresponding 
to input j. Equation (4.15b) can replace Equation (4.15a) since knowledge about the state m’ and the 
input j, at time k-1 , completely, defines the path resulting in 42. 

State Sk = m. Using Equation (4.8) and Equation (4.10) to simplify the notation of Equation (4.15) 
yields the following: 

 

��� =������(�,�)
�

���
�����,�(�,�) (4.16) 

Equation (4.16) indicates that a new forward state metric at time k and state m is obtained by 
summing two weighted state metrics from time k-1. The weighting consists of the branch metrics 
associated with the transitions corresponding to data bit 0 and 1. Figure 3.1 illustrates the use of two 
different types of notations for the parameter alpha. We use ),(

1
mjb

ka − for the forward state metric at 
time k-1, when there two possible underlying states (depending upon whether j=0 or 1). And we use 

m
ka for the forward state metric at time k, when the two possible transitions from the previous time 

terminate on the same state m time k.   
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(a) Forward state metric    (b)    Reverse state metric 

(0, ) 0, (0, ) (1, ) 1, (1, )
1 1 1 1

m b m b m b m b m
k k k k ka a aδ δ− − − −= +  

(0, ) (1, )0, 1,
1 1

m mm m m
k k k k kβ β δ β δ+ +

∫ ∫= +  

Where b (j,m) is the state going backward in where ∫ ),( mi is the next state going an  

time corresponding to an input j. input j and state m.  

4.5 Branch Metric:  

 ( ), ,expi m i i i m
k k k k k kx u y vδ π= +

 

Graphical representation for calculating m
ka and m

kβ [2]. 

4.6 Calculating the Reverse State Metric 

Starting from Equation (4.9) where 
( , )
1 1 1 ( , ) ,
i m N

k k kR S i mβ + + +
∫  = = ∫ we show m

kβ as follows: 

 1( ) ( , )m N N
k k k k k kp R S m p R R S mβ += = = = (4.17) 

We can express 
m
kβ as the summation of all possible transition probabilities to time k+1, as follows: 
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Using Bayes’ theorem, 
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Sk =m and dk=j in the first term on the right side of Equation (4.19) completely defines the path 

resulting in ( )∫=+ ),1 mjSK the next state given an input j and state m. thus, these conditions allow 

replacing '1 mSk =+ with mSk = in the second term of Equation (4.19), yields the following: 
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Equation (4.20) indicates that a new reverse state metric at time k and state m is obtained by summing 
two weighted state metrics from time k+1The weighting consists of the branch metrics associated 
with the transitions corresponding to data bits 0 and 1 Figure 3.1.b illustrates the use of two  different 

types of notation for the parameter beta. We use 
( )∫
+

mi
k

,
1β for the reverse state metric at time k+1 when 

there are two possible underlying states (depending on whether j=0 or 1). And we use m
kβ for the 

reverse state metric at time k, where the two possible transitions arriving at time k+1 stem from the 
same state m at time k. Fig 3 represents a graphical illustration for calculating the forward and reverse 
state metrics. Implementing the MAP decoding algorithm has some similarities to implementing the 
Viterbi decoding algorithm [3]. In the Viterbi algorithm, we add branch metrics to state metrics. Then 
we compare and select the minimum distance (maximum likelihood) in order to form the next state 
metric. The process is called add-compare-select (ACS). In the MAP algorithm, we multiply (add, in 
the logarithmic domain) state metrics by branch metrics. Then, instead of comparing them, we sum 
them to form the next forward (or reverse) state metric, as seen in figure 1. The differences should 
make intuitive sense. With the Viterbi algorithm, the most likely sequence is being the best path. With 
the MAP algorithm, soft number (likelihood or Log-likelihood) is being sought; hence the process 
uses all the metrics from all the possible transitions within a time interval, in order to come up with 
the best overall statistic regarding the data bit associated with that time interval. 

4.7  Calculating the Branch Metric 

We start with Equation (4.10), which is rewritten below: 
, ( , , ) ( , ) ( ) ( )i m

k k k k k k k k k kp d i S m R p R d i S m p S m d i p d iδ = = = = = = = = = (4.21) 

Where kkkk xyxR ,,= is the received data bit, and ky is the corresponding noisy received parity bit. 
Since the noise affecting the data and the parity are independent, the current state is independent of 
the current input, and can therefore be any one of the 20states, where V is the number of memory 
elements in the convolution code system. That is, the constraint length, k, of the code is equal to V+1. 
Hence, 

1( )
2k k vp S m d i= = =

 
and 

( , ) ( , )
2

i
m
k k k k k k k vp x d i S m p y d i S m πδ = = = = =

 (4.22) 

Where i
kπ is defined as p(dk=i), the a priori probability of dk.

The probability p(Xk=xk) of a random variable. Xk taking on the value xk is related to the probability 
density function (pdf) px,(xk) as follows [17]. 

P(Xk=xk)=pxk,(xk)dk (4.23) 

For notational convenience, the random variableXk, which takes on value xk, is often termed “the 
random variable xk” ,which represents the meanings of Xk and Yk in Equation (4.22). Thus, for an 

AWGN channel where the noise has zero mean and variance 
2σ , we use Equation (4.23) in order to 

replace the probability terms in Equation(4.22) with their pdf equivalents, and we write 
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Where ku and kv represent the transmitted data bits and parity bits, respectively (in bipolar form), 
dxk and dyk are the differentials of xk,yk and get absorbed into the constant Ak below. Note that the 
parameter i

ku represents data that has no dependence on the state m. However, the parameter mi
kv ,

represents data, which does depend on the state m, since the code has memory. 
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If we substitute Equation (4.24) into Equation (1), we obtain 
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and 
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    (4.26c) 

Where, 01 / kkk πππ = is the input priori probability ratio (prior likelihood) and e
kπ is the output 

extrinsic likelihood each at time k. In equation (4.26b), one can think of e
kπ as a correction term (due 

to the coding) that changes the input prior knowledge about a data bit. In a turbo code, such correction 
terms are passed from one decoder to the next, in order to improve the likelihood ratio for each data 
bit, and thus minimize the probability of decoding error. Thus the decoding process entails the use of 
Equation (4.26b) to Compute Λ����� for several iterations. The extrinsic likelihood e

kπ , resulting from 

a particular iteration replaces the a priori likelihood ratio 1+kπ for the next iteration. Taking the 

logarithm of �(���) in Equation (4.26b) yields Equation (4.26c) which shows that the final soft 
number �(���)is made up of three LLR terms: the priori LLR, the channel measurement LLR, and the 
extrinsic LLR [17]. The MAP algorithm can be implemented in terms of likelihood ratio �(���) as 
shown in Equation (4.26a) or (4.26b). However, implementation using likelihood ratios is very 
complex because of the multiplication operations that are required. By operating the MAP algorithm 
in the logarithmic domain [16, 18] as described by the LLR in Equation (4.26b) or (4.26c), the 
complexity can b greatly reduced by eliminating the multiplication operations. 

4.8 Performance of Turbo Codes for SOVA 

A simulation program has been written and it gives the performance for any length data. However, it 
takes much time depending on data length, punctured or unpunctured pattern, The Eb/N0 ratios 
provided and the channel models used. At first, analysis was done on an AWGN channel for rate 1/2 
lengths 400-bit and SOVA turbo decoder. We observe the gain achieved by the turbo code relative to 
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convolutional code of relatively complexity. We can clearly see the iterative power of turbo code 
figure. 

 
Fig 7 Performance by Simulation of Length 400 bit rate 1/2, and GeneratorPolynomial G = 

{7,5},Turbo code over AWGN Channel. 

 
Fig 8 Performance by simulation ofLength 1024, Rate 1/2 and GeneratorPolynomial G = {7,5}, Turbo 

Code over AWGN Channel. 

 
Fig 9 Performance by Simulation of Length 1024, Rate 1/3 and GeneratorPolynomial G = {7,5} 

Turbo Code over AWGN Channel. 
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4.9 Comparison between the MAP and SOVA 

The MAP algorithm is unlike the Viterbi algorithm (VA), where the APP for each data bit is not 
available. Instead, the VA finds the most likely sequence to have transmitted. However, there are 
similarities in the implementation of the two algorithms. When the decoder bit error probability, PB, 
is small, there is very little performance difference between the MAP and Viterbi algorithms. 
However, at low values of bit-energy to noise power spectral density, Eb/No and high values of PB, 
the MAP algorithm can outperform decoding with a soft-output Viterbi algorithm called SOVA [15] 
by 0.5 dB or more [16]. For turbo codes, this can be very important, since the first decoding iterations 
can yield 49.  

Poor error performance: The implementation of the MAP algorithm proceeds somewhat like 
performing a Viterbi algorithm in two directions over a block of code bits. Once this bidirectional 
computation yields state and branch metrics for the block, the APPs and the MAP can be obtained for 
each data bit represented within the block. The soft-input/soft-output (SISO) decoder is the critical 
part of the decoder, using the soft output Viterbi algorithm (SOVA) [15], [27] or the log-maximum a 
posteriori algorithm (log-MAP) [27]. Log-MAP gives better performance than SOVA, but SOVA has 
lesser complexes. For real time application, we want the lowest BER, while latency is not a priority. 
The MAP algorithm is not considered because it has high complexity and suffers from Numerical 
problem. For an encoder memory M=3 the number of operations [18] using MAP, Log-MAP and 
SOVA. The Log-MAP is 2.8times more complex than SOVA. Thus, from a latency point of view 
SOVA is best of MAP turbo decoding algorithm, form a performance of view Log-MAP is the 
best.The performance of both algorithms for the standard rate 1/2 four state systematic convolutional 
code (g1 = 7 and g2 = 5) is given in Table 1. The BER values for both cases are decreased, when SNR 
is increased. 

Table1 BER for a four state code using MAP decoder & SOVA decoder 

Eb/N0(dB) 0 0.1 0.5 1.5 2 

Log-MAP 0.19714 0.06446 0.02183 0.006272 0.00225 

SOVA 0.145829 0.1066 0.059479 0.017459 0.004567 

Fig 10 Performance by Simulation of Length 1024, Rate 1/2 and GeneratorPolynomial G = {7,5}, 
Turbo Code over AWGN Channel. 
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5. Results 

A four state, rate1/2, 400- bit performance over the AWGN channel after 15 Iterations, we get BER 
zero whenm Eb/N0 is more than 2dB in SOVA decoder and 1.75dB in Log-MAP decoder.At the same 
bit rate 1/2, 1024 performance over AWGN channel after five iterations the Log-MAP decoder shows 
the better performance than SOVA decoder.At the same bit rate 1/3, 1024 performance over AWGN 
channel after five iteration the Log-MAP decoder shows earlier BER zero than that of SOVA decoder. 

6. Conclusion 

From latency point of view, SOVA decoder is better, as it is less complex, than Log-MAP decoder. 
On the other hand, the performance of Log-MAP decoder is more sound than SOVA decoder. But it is 
more complex than SOVA. 

7. Recommendation 

Research on the optimum decoding strategies of the MAP decoder and SOVA decoder over the 
Raleigh Channel is recommended. 
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