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Abstract 

In this work, Litchi chinensis seed powder has been chemically modified to charred Litchi chinensis seed 

powder (CLCS) for removal of Cr(VI) from the simulated wastewater. The adsorption capacity of CLCS for 

Cr(VI) was determined in batch experiment method. The materials were characterized using scanning 

electron microscopy (SEM), X-ray diffraction (XRD), and fourier transform infrared (FTIR) spectroscopy. 

Biosorption behaviour was investigated using isotherm and kinetic models. CLCS demonstrated a 

noteworthy adsorption capacity for Cr(VI), with a maximum adsorption capacity of 69.93 mg/g at pH 2.0. 

The Cr(VI) adsorption onto CLCS was found to follow pseudo-second-order kinetics and the experimental 

data best fitted with Langmuir isotherm model. According to the results, Cr(VI) can be removed from acidic 

wastewater using CLCS as an adsorbent. The results indicate that further studies and modification are 

necessary to improve the efficiency of the CLCS, and its feasibility at normal pH conditions. 
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1. Introduction 

Water pollution is a global concern, causing detrimental impacts on human health (WHO & UNICEF 2000; 

Georgaki & Charalambous, 2023). Direct discharge of effluents, chemical exposure, suspended particles, and 

oxygen depletion are the main pollutants of water. Heavy metals make up the majority of chemical pollutants 

and are one of the main causes of water pollution due to their toxic properties and carcinogenicity (Miao et al., 

2015). Consumption of heavy metals beyond the bio-recommended limit results in adverse health 

consequences known as heavy metal bio-toxicity (Verma, 2017). Because they tend to bioaccumulate, heavy 

metals are hazardous. Heavy metals can enter a water system through a variety of channels, including 

industrial and consumer waste, and acid rain, which decomposes soil and discharges heavy metals into 

streams, rivers, lakes, and groundwater. Lowered energy levels, allergies, altered blood chemistry, and 

inflammation in the liver, kidneys, lungs, and other crucial organs are all possible effects of heavy metal 

poisoning. Prolonged exposure can cause gradually developing physical, muscular, and neurological 

disorders. Multiple prolonged exposures to some metals may potentially cause cancer (Verma, 2017).  

Chromium is among the most found heavy metals in wastewater. This metal comes in contact with drinking 

water due to natural as well as anthropogenic causes. Natural causes can be erosion or geochemical 

phenomena whereas, anthropogenic causes include industrial sources such as fertilizers and pesticide 

production, alloying, dying, tanneries, and electroplating (Mahmoud, 2020; Suganya et al., 2019). Among 

various valency states of chromium, trivalent and hexavalent chromium are the most common (McNeill et al. 

2012; Moffat et al., 2018). Cr(III) is a vital essential element, but Cr(VI) is harmful, as it may have a key role 

in the body's respiratory, digestive, urinary, gastrointestinal, immunological, and reproductive dysfunctions 

(Georgaki & Charalambous, 2023). The USEPA has set a 0.1 mg/L permissible contamination limit for total 

chromium (VI) in drinking water (USEPA, 2002), and the limit is 0.05 mg/L according to WHO (Cotruvo, 

2017). 

Adsorption, ion exchange, redox reaction, and membrane technology are a few of the techniques being 

researched and utilized to remove toxic heavy metals from the aqueous environment (Abdel-Galil et al., 2021; 

Labied et al., 2018; Ortega et al., 2017; Abejon et. al., 2015). However, because of the need for 

costly equipment, lack of sensitivity, poor removal efficiency, and other factors, most of the preceding 

remedies can only be employed to a certain extent (Aryal et al., 2022; Aryal et al., 2019; Homagai et al., 2023; 

Saha et al., 2011). The adsorption method has become increasingly common due to the accessibility of less 

expensive components to produce inexpensive adsorbents (Bingol et al., 2004; Bashyal et al., 2023; Poudel 

et al., 2024). Agricultural residues (peels, seeds, husks, etc.) are discovered to have ion exchange and 

adsorptive abilities since they are rich in several functional groups. Also, they are cheap and readily available. 

Both their raw and modified forms can be used as efficient biosorbents. Our research group has reported 
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several other studies on the Cr(VI) sequestration using different biomass such as pomegranate peels (Rai et 

al., 2023) and Arundo donax stem (Bhattarai et al., 2022). The authors hypothesize that litchi seed, an 

abundant biowaste, also can be modified to an efficient adsorbent for removing pollutants from water. The 

raw biomasses in the previous studies did not show a significant adsorption capacity, but their efficiency 

improved after they were treated with an acid. This might be due to the ring opening of the surface functional 

groups present. In reference to previous studies, raw biomass has been modified to CLCS using conc. H2SO4.  

The present study aims to broaden the understanding on the efficacy of easily available biomass such as 

agricultural wastes for the adsorptive removal of Cr(VI) from wastewater. It is anticipated that the results 

obtained will support the reports from similar studies reported earlier. Additionally, H2SO4 treatment may 

promote Cr (VI) removal. The objective of the study was to synthesize charred biomass derived from Litchi 

chinensis seed to investigate its effectiveness in eradicating Cr(VI) from aqueous solution. The study aimed 

to investigate the discrepancy in the biosorption behaviour of the biomass at variable pH, adsorbent dose, and 

contact time, followed by a study on the reusability of the spent biosorbent.  

 

2. Methods  

2.1. Preparation of solution 

Most of the chemicals were of the analytical-grade (AR) grade and were utilized without further purification. 

Calculated amount of K2Cr2O7 crystals were dissolved in deionized (DI) water to make the stock solution 

of Cr(VI), which were further subjected to dilution process to obtain working solutions.  

2.2. Preparation of adsorbent 

Lychee seeds were collected from Kalimati, Kathmandu, and were washed several times before drying in 

daylight for two weeks. The dry seeds were ground and separated to obtain a fine powder of 120 µm particle 

size. The powder was then referred to as raw Litchi chinensis seed powder (RLCS). Furthermore, three-

fourths of the dry RLCS powder were treated with conc. H2SO4 at a 1:2 g/mL ratio (solid: liquid). The acid 

alteration of the RLCS creates ideal circumstances for the opening of the cellulose ring in the sorbent, which 

is high in cellulose content. Additionally, this results in adequate micro-porosity and increases the surface area 

(Homagai et al., 2010). The charred RPP was washed until neutral pH, dried, and further sieved to 120 µm 

and was named as (charred Litchi chinensis seed powder) CLCS. 

2.3. Adsorbent characterization 

The salt titration method was employed using different concentrations of NaCl to evaluate the point of zero 

charge (pHPZC) of CLCS. SEM (JEOL, JSM-6701F,Japan) images were used to investigate the morphology 

of RLCS, CLCS, and Cr(VI) adsorbed CLCS. The FTIR spectrometer (IR Affinity -1S-SHIMADZU 
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spectrometer, Kyoto, Japan) was utilized to examine the functionality of the biosorbents. Their crystal 

structures were studied using XRD pattern (X-ray diffractometer, Rigaku Co., Japan). 

2.4. Batch biosorption tests 

For the biosorption investigations of both RLCS and CLCS, 20 mL of a solution of known Cr(VI) content 

with 20 mg of the sorbent was used. To achieve equilibrium, the mixture was stirred for 24 hours at 140 rpm. 

The remaining Cr(VI) ion concentration was then determined from the filtrate after the solution had been 

filtered. A dual-beam UV-visible spectrophotometer (Labtronics, LT-2802, India) was employed to 

spectrophotometrically measure equilibrium and initial chromium(VI) concentrations. 1,5-

Diphenylcarbazide (DPC) was used for measuring Cr(VI) in the solution. In an acidic media, DPC was added 

to Cr(VI) to form Cr(III)-DPCA (Diphenyl carbazone). Equilibrium data were obtained through batch 

adsorption tests at variable contact times, initial Cr(VI) concentration, and pH at room temperature. All 

experiments were accomplished in triplicate and the findings were represented as average. 

Equations 1 and 2 calculated the biosorption capacity (𝑞𝑒) (mg/g) at equilibrium and percentage of biosorption 

(%A), respectively. 

𝑞𝑒 = 
𝐶𝑜−𝐶𝑒

𝑀
 × 𝑉          (1) 

% A = 
𝐶𝑜−𝐶𝑒

𝐶𝑜
 × 100        (2) 

Here, ‘Co’ and ‘Ce’ in mg/L, denote the initial concentration and equilibrium time concentration of metal, 

respectively. ‘M’ in grams is the mass of the sorbent, and ‘V’ in liters is the volume of the solution (Hameed 

& Ahmad, 2009; Ucun et al., 2003; Poudel et al., 2022). 

2.4.1 Biosorption kinetics 

With a preliminary Cr(VI) concentration of ~20 mg/L and biosorbent dosage of 1 g/L, kinetic experiment of 

Cr(VI) adsorption onto SPP@Zr was performed. The pH was held constant at 2.0 during the experiment. The 

sample from each flask was filtered after a certain length of time, and the Cr(VI) concentration was analyzed. 

Calculations were made to determine the biosorption capacity of Cr(VI) at a certain time (t). The kinetics of 

the biosorption phenomenon were studied using pseudo-1st- order (PFO) and pseudo-2nd-order (PSO) 

kinetic models. PFO linear equation and PSO linear equation are represented by equations 3 and 4, 

respectively (Lagergren, 1998; Ho, 2006). 

log(𝑞𝑒 – 𝑞𝑡) = log𝑞𝑒 – 
k1

2.303
 × t       (3) 

𝑡

𝑞𝑡
=

1

𝑘2.𝑞𝑒
2 +

1

𝑞𝑒
× 𝑡        (4) 
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Here, ‘qt’ (mg/g) denotes the biosorption capacity at time ‘t’, ‘k1’ (mg/g.min) denotes the pseudo-1st-order 

rate constant, and ‘k2’ (g/mg.min) denotes the pseudo-2nd-order rate constant (Ucun et al., 2003). 

2.4.2 Adsorption isotherm 

With a range of starting Cr(VI) concentrations (5 to 250 mg/L), a dosage of 1 g/L and solution pH of 2.0, a 

biosorption isotherm experiment was conducted. At 298 K, the flasks were swirled for 12 h. Following 

biosorption, samples were filtered, and the equilibrium Cr(VI) concentrations were analyzed. Cr(VI) 

adsorption behavior was modeled using the Freundlich and Langmuir isotherms. Freundlich isotherm 

describes the multilayer adsorption on sorbent’s heterogeneous sites. This isotherm model is linearly 

expressed through Equation 5 (Freundlich, 1907) 

log𝑞𝑒 = log KF + 





1

n
 log Ce      (5) 

The Freundlich exponent, ‘n’, defines the intensity of adsorption, and the adsorption capacity is denoted by 

the Freundlich constant, ‘KF’ (mg/g).(L/mg) 1/n. 

The monolayer adsorption on the adsorbent's surface is described by the Langmuir isotherm model. Equation 

6 gives it a linear expression (Langmuir, 1916). 

𝐶𝑒

𝑞𝑒
 = 

1

𝑞𝑚𝑎𝑥 .𝑏
 + 

𝐶𝑒

𝑞𝑚𝑎𝑥
                                                    (6) 

Here, ‘𝑞𝑚𝑎𝑥’ (mg/g) denotes the maximal biosorption capacity, and ‘b’ (L/mg) is the Langmuir constant. 

2.5 Desorption studies  

The effectiveness of the CLCS for biosorption was tested numerous times using a sorption-desorption cycle. 

The adsorbed quantity of Cr(VI) was intended to determine the equilibrium concentration. For this, 40 mL of 

chromium (VI) solution was mixed with 40 mg of CLCS and the mixture was agitated for 24 hours at 

optimum pH. After filtration, the residue was subjected to desorption by mixing it with 40 mL of 1.0 M NaOH 

solution and agitating the mixture for another 24 hours. Variable concentrations of sodium hydroxide were 

employed as an eluent for the study. 

Equation 7 gives the percentage desorption (%D) of chromium. 

% D = 
Ad

Aa
 × 100        (7) 

Here, ‘Ad’ is the amount desorbed whereas, ‘Aa’ is the adsorbed amount (mg/g) of metal ion (Paudyal et al., 

2020; Poudel et al., 2021). Figure 1 revealed the adsorbent preparation method followed by the adsorption-

desorption cycle. 
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Figure 1: Flowsheet illustrating the biosorbent preparation and biosorption-desorption cycle. 

 

3. Results and discussion 

Characterization 

Figure 2 illustrates the plots for the mass titrations using 0.01M, 0.05M, and 0.1M NaCl solution, 

demonstrating that the pHPZC of CLCS is 4.0. The result signified that the biosorption of oxyanion of 

chromium species is favoured at a pH lower than 4.0. Whereas the cationic species are preferably adsorbed at 

pH conditions above the pHPZC value (Bhattarai et al., 2022; Labied et al., 2018). 
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Figure 2: Determination of point zero charges (pHPZC) of CLCS using 0.01, 0.0.05, and 0.1 M NaCl. 

Figure 3 illustrates the FTIR spectra of the raw, charred, and metal-adsorbed biosorbent. A broader peak at 

3332.99 cm-1 shows the existence of the -OH group in RCLS. It shifted to 3375.43 cm-1 after charring and 

disappeared after Cr(VI) uptake. Peaks at 2924.09 cm-1 in RCLS and 2920.23 cm-1 in CLCS attributed to -

CH stretching vibrations, which disappeared in Cr(VI)-adsorbed CLCS. A peak at 1620.21 cm-1 in RLCS, 

shifting to 1589.34 cm-1 in CLCS, and disappearing after metal adsorption can be correspond to C=O 

stretching vibrations (Rai et al., 2023). Furthermore, a peak at 1018.41 cm-1 in RLCS shifted and slightly 

deformed in CLCS. The observed factors indicated the chemical modification of the adsorbent and successful 

Cr(VI) adsorption. 
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Figure 3: FT-IR spectra of RLCS, CLCS, and Cr(VI)-CLCS. 

 

The SEM images of RLCS, CLCS, and chromium(VI) adsorbed CLCS are displayed in Figure 4. It was 

observed that the RLCS's uniform, smooth surface had much fewer pores and voids. In contrast, the charring 

process produced rough surfaces with larger pores and voids CLCS, which made the adsorbent more 

welcoming toward metal ions. The surface roughness of the metal-loaded CLCS was decreased due to Cr(VI) 

biosorption. 

 

Figure 4: SEM images of RLCS (a), CLCS (b), and Cr(VI)-CLCS (c). 

Figure 5 shows the XRD pattern of the adsorbents. A somewhat intense peak was observed at the 2-theta 

value of around 20° to 25° in RLCS, which signifies the occurrence of crystalline cellulose in the RLCS. 

Upon charring, the peak seemed to broaden, signifying the conversion of the crystalline structure to 

amorphous. The amorphous structure is more favorable for the uptake of Cr(VI). After chromium was 

adsorbed onto CLCS, the peak narrowed, which may have been caused by the sorbent's increased particle 

size. 
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Figure 5: XRD diffractogram of raw, charred and Cr(VI)-adsorbed biosorbent. 

 

Effect of pH 

The pH studies were performed by taking 20 mL of Cr(VI) solution with 20 mg of the RLCS and CLCS in 

conical flasks and maintaining preliminary pH values from 1.0 to 7.0, before adding the biosorbent. Each 

sample was shaken using a mechanical shaker at room temperature. The equilibrium pH was evaluated by 

utilizing a digital pH meter. The filtrate was utilized for the analysis of final Cr(VI) concentration. The removal 

rates of both the adsorbents rose from pH 1 to 2 but subsequently fell as pH climbed further, indicating the 

value of 2 as the ideal pH. The maximum Cr(VI) elimination at the optimal pH is shown in Figure 6 to be 

19.9% for RLCS and 70.3% for CLCS. Further research was done for the charred adsorbent only because 

there is a significant difference between the removal efficacies of RLCS and CLCS. In acidic circumstances, 

chromium is typically found as anions, such as HCrO4
−, CrO4

2−, or HCr2O7
−. More particularly, when the 

pH rises, the primary form of HCrO4
−, which is found in solutions with pH values between 1 and 3, is changed 

to CrO4
2− and HCr2O7

−. The key difference is that the adsorbent surface can more readily absorb HCrO4
− 

because it has larger adsorption energy than the other two forms (Ball & Nordstrom, 1998; Rai et al., 2021). 

Thus, it can be concluded that the biosorption efficiency for biosorbent is substantially linked to the sorption 

of HCrO4
−. Additionally, Cr(VI) ions and OH− ions compete for adsorption sites on adsorbent surfaces when 

pH of a solution rises. This rivalry reduces the adsorbent’s ability for absorption and hinders the adsorption 

capacity. Similar results for the hexavalent chromium removal using bio-adsorbents have been reported in 

previous studies with the optimum pH being 2.0 (Bhattarai et al., 2022; Pant et al., 2022; Rai et al., 2021). The 

pH of 2.0 was fixed for the experiments that followed. 

 



International Journal of Environment  ISSN 2091-2854                 92 | P a g e  

 

 

1 2 3 4 5 6 7

10

20

30

40

50

60

70

80
 CLCS

 RLCS

C
r(

V
I)

 r
e
m

o
v
a
l 
e
ff

ic
ie

n
c
y
 (

%
)

pH

 

Figure 6: Impact of pH on Cr(VI) uptake by raw and charred biosorbent. 

Influence of contact time 

To study the impact of contact time throughout a time range, 25 mg of CLCS and 25 mL of 20.12 mg/L of 

Cr(VI) solution at pH 2.0 were taken in several conical flask and shaken vigorously at room temperature. We 

carried out biosorption experiments with different contact periods. Each flask's sample was filtered after a set 

period of time, and the equilibrium Cr(VI) concentration was analyzed. Figure 7 depicts the Cr(VI) sorption 

onto CLCS over 10 minutes to 24 hours. After 240 minutes, it was discovered that the metal adsorption and 

adsorption percentage onto CLCS were constant, suggesting the equilibrium period for the maximum 

sorption. 
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Figure 7: Impact of contact time on biosorption. 

 

Bisorption kinetics 

The chromium (VI) biosorption on CLCS was inspected by PFO, and PSO kinetic models. When plots in 

Figure 8 were analysed, the PSO model, with a higher value of correlation coefficient, best described the 

adsorption process. The result showed that the biosorption is influenced by chemisorption. The findings were 

shown to be consistent with other research that employed a variety of biomass-based adsorbents to adsorb 

hexavalent chromium (Bhattarai et al., 2022; Homagai et al., 2023; Rai et al., 2021). Table 1 displays the 

derived values for the kinetic parameters. 

 

Figure 8: (a) PFO, and (b) PSO kinetic plots. 
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Table 1: Calculated kinetic parameters for Cr(VI) bisorption onto CLCS. 

 

Adsorption isotherm 

Figure 9 shows the Freundlich and Langmuir isotherm plots (linear) for the biosorption process. From the 

isotherm study, the maximal chromium (VI) adsorption onto CLCS was found to be 69.93 mg/g at the 

optimum pH of 2.0. The Langmuir correlation coefficient (R2) value was found greater than the Freundlich 

correlation coefficient value, proving the better fitness of the Langmuir model than the latter. This indicated 

the adsorption to be unimolecular and the adsorbent surface to be homogenous (Langmuir, 1916; Dong et al., 

2011). The determined isotherm parameters are enumerated in Table 2. Table 3 compares the Cr(VI) 

biosorption capacities of various biosorbents with the CLCS.  

 

 

Figure 9: (a) Langmuir, and (b) Freundlich isotherm plots. 

 

Table 2: Calculated isotherm parameters. 

 

 

qexp (mg/g) PSO PFO 

     K2 (mg.min/g) qe 

(mg/g) 

R2   K1 (min-1) qe (mg/g) R2 

28.48 1.05 × 10−3 29.674 0.996  1.43 × 10−2 13.836 0.978 

Langmuir Freundlich 

     qmax (mg/g) b (L/mg) R2 KF (mg.g-1)(L.mg-1)1/n n R2 

69.930 0.117 0.995 12.22 2.402 0.860 
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 Impact of adsorbent dosage 

Adsorbent dosage studies were carried out by using a different mass of adsorbent for the adsorption process 

in which concentration and volume of metal solution were kept constant during each adsorption process. Here, 

we have used different dosage of adsorbent (0.2 to 3.0 g/L of CLCS) in different reagent bottle where 20 ml 

of 20 mg/L Cr(VI) solution was used at pH 2.0 and shaken for 24 hours and filtered using Whatman filter 

paper, then concentration before and after adsorption were analysed using a spectrophotometer. The quantity 

of the adsorbent metal ion rises with the dose of the sorbent because surface-active sites are more readily 

available. The correlation between the dosage of CLCS and the remaining Cr(VI) concentrations is depicted 

in Figure 10. The results exposed that 2.60 g/L of CLCS dropped the residual chromium concentration of the 

solution from 20 mg/L to 0.05 mg/L. With an increasing dose of CLCS, Cr(VI) was totally remediated from 

water. The WHO has set a limit of 0.05 mg/L for the maximum content of Cr(VI) in drinking water. The 

results are found agreeing to the findings of previous studies (Pant et al., 2022; Rai et al., 2023). 

 

Table 3: Maximum Cr(VI) biosorption capacity of CLCS in comparison to that of other previously reported biosorbents. 

 

SN Bio-adsorbent pH Adsorption 

capacity (mg/g) 

Reference 

1 Peanut shell 2.0 4.32 (Ilyas et al., 2013) 

2 Banana peel 1.5 10.42 (Parlayici & Pehlivan, 2019) 

3 Carbon slurry 2.0 15.24 (Gupta et al., 2010) 

4 Cactus fruit 2.0 18.50 (Fernández-López et al., 2014) 

5 Giant reed 3.0 18.80 (Ammari, 2014) 

6 FeCl3 - treated pomelo peel 2.0 21.55 (Wang et al., 2020) 

7 Pomegranate peel 3.0 28.28 (Abdel-Galil et al., 2021) 

8 Coconut husk 2.0 29.00 (Tan et al., 1993) 

9 Waste newspaper 3.0 59.88 (Dehghani et al., 2016) 

10 Charred Litchi chinensis seed powder 2.0 69.93 Present study 
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Figure 10: Impact of adsorbent dose. 

Desorption studies 

As an eluent for the desorption study, several NaOH solution concentrations were used. Figure 11(a) depicts 

the effect of NaOH concentration on CLCS. It was found that the rate of desorption increased to 96% from 

19% when the NaOH concentration was raised from to 1M 0.05M and remained constant as the concentration 

was raised further. This indicated that 1.0 M of NaOH was the ideal concentration for desorption. The 

performance of CLCS following a few consecutive adsorption-desorption cycles is shown in Figure 11(b). In 

the first cycle, the removal efficiency was 69.12%; however, it fell to 67.03%, 64.46%, and 60.87% in 

successive cycles. The findings demonstrated that CLCS can be successfully regenerated for certain cycles. 

The reduction in removal effectiveness might be brought about by the occlusion of certain adsorbent pore 

openings, and a reduction in the number of binding sites on the surface of the (Ma et al., 2019). 
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Figure 11: (a) Percentage desorption of Cr(VI) at varying NaOH concentrations, and (b) Variation in Cr(VI) 

biosorption ability of CLCS after consecutive adsorption-desorption cycles. 

 

Conclusions 

The charred Litchi chinensis seed powder was prepared by treating dry lychee seed powder with concentrated 

sulphuric acid. The charred biosorbent (CLCS) showed greater adsorption efficiency than the uncharred one 

(RLCS). CLCS had the greatest sorption at a pH of 2.0, while its pHPZC was found to be 4.0. At the ideal pH, 

CLCS demonstrated maximum Cr(VI) biosorption capacity of 69.93 mg/g, and the equilibrium was obtained 

at 4 hours at room temperature (25℃). The kinetics data best agreed with the PSO model and the isotherm 

data best fitted with the Langmuir model. Desorption studies revealed that CLCS can be revived and salvaged 

for numerous cycles before its disposal. The results suggested that the CLCS can also be a good adsorbent 

like other biomasses reported in earlier researches, for the Cr(VI) removal from aqueous solution. Further 

studies are necessary to improve the efficiency of the CLCS and its feasibility at normal pH conditions. The 

acid modification process has its drawbacks, as the use of sulphuric acid is harmful to the environment. 

Therefore, there is a need for further research on the development of environmentally green biosorbents with 

greater removal efficiency at natural pH conditions. 
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