ISSN 2091-2609

Available online at www.ijasbt.org

International Journal of Applied Sciences and Biotechnology

A Rapid Publishing Journal

APPLIED SCIENCES		BIOTECHNOLOGY
Biochemistry Molecular biology Microbiology Cell biology	Immunobiology Bioinformatics Novel drug delivery system Pharmacology	Microbial biotechnology Medical biotechnology Industrial biotechnology Environmental biotechnology
Cytology Genetics Pathology Medicinal chemistry Polymer sciences Analytical chemistry Natural chemistry	Neurobiology Bio-physics Botany Zoology Allied science Earth science	Nanotechnology

If any queries or feedback, then don't hesitate to mail us at: editor.ijasbt@gmail.com

MANGANESE: ITS SPECIATION, POLLUTION AND MICROBIAL MITIGATION

Arvind Sinha and Sunil Kumar Khare*

Department of Chemistry, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi-110016, India

*Corresponding author e-mail: skhare@rocketmail.com

Abstract

Manganese is known to be one of the essential trace elements and has plenty of applications. Inspite of its essential nature, concerns have arising due to its toxic nature at higher concentration. Several methods of removing manganese from environment have been proposed during the last few decades. However, the most favourable option based on cost-effectiveness, performance, and simplicity is still under investigation. The current review summarizes updated information on various technical aspects on manganese, including chemical nature, speciation, toxicity and remediation strategies. The review starts with covering the major sources of manganese, its interaction with biological biomolecules causing toxicity. This is followed by its speciation in environment, describing both biotic and abiotic processes. The biotic processes describe the role of microorganisms in the oxidation/ reduction of various oxidation states of manganese. Whereas, abiotic processes mainly describes the role of pH and oxygen taking thermodynamical aspects. The main part of this review focuses on recent developments on using microbial systems for manganese bioremediation. The updated works on different strategies adopted for the remediation of manganese from the environment have also been summarized.

Keywords: Manganese oxide, Manganese speciation, Bioremediation, Bacteria

Introduction

Due to rapid industrialization heavy metals have become worldwide environmental problem. Manganese is known to be one of the plentiful metals on the Earth crust. Manganese is required by living organisms as micro nutrient as well as extensively used by human for their comfort. Manganese is used as fertilizer, food additive, catalysts, act as basic component for welding of manganese containing materials, mining, smelting, pigments or paints and dry cell batteries(Li et al., 2010; Rajicet al., 2009). Not only in bulk form but also its nano compounds are now days extensively used. These have promising applications in catalysis, energy storage, sensors, ion sieves, high density magnetic storage media and drug delivery (Balan et al., 2013; Brock et al., 1998). Along with above anthropogenic sources manganese leaching from manganese bearing rocks, volcanic eruption and forest fires also contributes to its environmental pollution (Schroeder et al., 1987). Manganese mainly occurs in form of minerals like oxides, sulphides, phosphates, pyrophosphates, carbonates and many more (Laznicka, 1992). Natural leaching of manganese from the minerals/bed rocks present is one of the major sources of ground water contamination. Manganese acts as toxicant when it is present in excess range of 0.1-0.5 mg/L (Li et al., 2010). Due to soaring growth in use of manganese and open presence in environment has created concern worldwide. The aim of the current review is to survey the scientific evidences published to date on the strategies applied for the removal of manganese from the environment. The reviews also focus on the various transformations occurring in nature once manganese is exposed and its toxicity towards living system.

Manganese as a pollutant

Manganese is less toxic metal as compared to other heavy metals and also an essential trace metal required for various biological functions. Nevertheless, it has number of detrimental properties such as the obstruction of water distribution grids, staining during laundry and the tainting of drinking water (Hallberg and Johnson, 2005; Mariner et al., 2008). Along with above these manganese both in excess and deficiency have harmful effects on health. During early eighteenth century the first occupational exposure of manganese and intoxication was reported (Michalke et al., 2007). Since then, lot of studies has been under taken to investigate and decipher the uptake, transport, metabolism and toxicity of manganese in the living system.

Mostly manganese exposure to living body occurs by inhalation and ingestion of manganese rich compounds and may results in neurological pathology, since brain is thought to be vulnerable target for manganese accumulation (Röllin and Nogueira, 2011). Higher manganese concentrations affect central nervous system, heart, lung, liver and some other organs (Crossgrove and Zheng, 2004). Accumulation of the manganese in brain tissue results in neurotoxicity which leads to progressive disorder of the extra pyramidal system similar to

Parkinson's disease (Crossgrove and Zheng, 2004). High concentration of manganese in the living system also affects DNA replication and cause mutations/ aberrations (Gerber *et al.*, 2002).Other effects of manganese toxicity are associated with its role in (i) mucopolysaccharides and (ii) peptidoglycan synthesis (Keen and Leach, 1988).

Manganese remediation

There has been an increasing awareness to limit the manganese in the metal contaminated environment. Manganese exists mostly in Mn^{2+} state in aqueous environment (Ellis *et al.*, 2000; Hallberg and Johnson, 2005; Li *et al.*, 2010). The maximum permissible limit of manganese concentration in drinking water is 0.1 mg L⁻¹, as per Bureau of Indian Standard (BIS) (Rajmohan and Elango, 2005). Oxidation of Mn^{2+} to MnO_2 is most commonly employed approach for its removal from the contaminated environment. Since MnO_2 is insoluble it gets precipitated. The precipitate is easily separated by filtration. The manganese remediation processes are classified into two general categories namely (i) active and (ii) passive processes.

Active processes: In these types of processes, large quantities of oxidant/ chemicals are added to raise the pH of the surrounding medium to enhance the abiotic oxidation (Hallberg and Johnson, 2005). Oxidizing agents like Cl₂, O₃, or H₂O₂ are commonly used. These are frequently used in the case of mine water remediation. During the treatment process, water is first neutralised by using alkaline compounds like limestone (CaCO₃), sodium carbonate (Na₂CO₃) and sodium hydroxide (NaOH). The use of alkaline compounds causes increase in pH which ultimately causes metal to precipitate. These processes require the installation of agitators, precipitators, clarifiers and thickeners, which increase the operational cost (Gazea et al., 1996). Also, in some cases, the reactions lead to formation of undesirable by-products (Dudley, 1998; Han et al., 2007).

Passive processes: Exploit naturally occurring geochemical and biological reactions to remove the manganese from the contaminated water (Gazeaet al., 1996; Logan et al., 2005; Santelliet al., 2010). Passive process mainly involves the use biological systems like, photosynthetic algal mat systemin which green algae are integrated with microbial mat with limestone substrate pond (Phillips et al., 1995), immobilised cyanobacteria mats in columns packed with glass wool (Bender et al., 1994) or wetlands (Sikora et al., 2000). Many of the microbial systems are known and reported which can catalyse the oxidation of Mn²⁺ to Mn⁴⁺ oxide. This microbial system may include bacteria, fungi and algae. These oxides being insoluble are separated from rest of the system.In past decade, various passive processes have been developed, for the removal of manganese, from lab scale to full-scale field applications (Whitehead et al., 2005; Whitehead and Prior, 2005). However at times,

This paper can be downloaded online at www.ijasbt.org/

these are disrupted by changes like variation in pH or metal concentration (Mariner *et al.*, 2008).

Manganese cycle/ speciation in the environment

Manganese exists in different oxidation states extending from 0 to +7; though some of the oxidation states like +2, +3, and +4 are found most commonly in nature (Tekerlekopoulou *et al.*, 2008). Depending on the local environment, manganese undergoes speciation both abiotically and biotically.

Abiotic speciation

Environmental conditions like pН, temperature, concentration and pE do have influence on metal speciation (Anschutz et al., 2005), it's obvious that the oxidation or reduction of manganese in environment will yield various oxidation states. In anoxic environment Mn²⁺ occurs mostly in solution or adsorbed to minerals, whereas in oxygenic environment it occurs as Mn³⁺/ Mn⁴⁺ oxides or hydroxides. In aqueous system, solubility of manganese increases as pH and oxidation-reduction potential decreases. Other anions like nitrates, chlorides and sulphates, if present, in high concentration may also increase the solubility of manganese. Manganese compounds mainly precipitate out in as Mn4+ and resolubilizes in the aqueous system as Mn^{2+} (Moore, 1991). In general, the existence of Mn^{2+} is thermodynamically favourable at lower pH conditions and anoxygenic environment, while, formation of Mn3+or Mn4+ are favoured at higher pH and oxygenic environment. Figure 1shows the abiotic speciation of manganese

In oxygenic environment, Mn^{3+} and Mn^{4+} , occur mainly as insoluble manganese oxyhydroxides (Lanson*et al.*, 2000; Davison 1993). According to Adams and Ghiorse, (1988), the stoichiometry and the chemical reaction of bacterial Mn^{2+} oxidation (determined by measuring oxygen consumption and hydrogen production) are written as:

$Mn^{2+} + \frac{1}{2}O_2 + H_2O$	\rightarrow	MnO_2 + $2H^+$
		(1)
MnO(OH)/Mn ₃ O ₄		
1/2MnO ₂ + 2H ⁺ + e ⁻¹ /2		$Mn^{2+} + H_2O$
		(2)

Studies on abiotic conversion of Mn^{2+} to Mn^{4+} (equation 1)by different researchers, has shown that it proceed in two steps (i) initial formation of oxyhydroxides (e.g. β -MnO(OH) or solid phase Mn^{3+} containing oxides (e.g., Mn_3O_4) the steps are then followed by (ii) very slow disproportionation or protonation of the Mn^{3+} oxyhydroxides or oxides, resulting into Mn^{4+} oxides (e.g. MnO_2) formation (Murray *et al.*, 1985; Nesbitt and Banerjee, 1998). Since, in the environment at pH greater than 8 and Mn^{2+} concentrations > ~ 1µM, the Mn (+2,+3) states are thermodynamically stable with respect to disproportionation reaction (Davison 1993; Junta and Hochella, 1994), so the second step i.e. disproportionation

or protonation in equation 1 act as a rate-limiting step (Nesbitt and Banerjee, 1998). The reduction of Mn^{4+} to Mn^{2+} can also take place at low pH and absence of oxygen [equation 2] but may require inorganic or organic

reductants (Davison 1993). Taking the advantage of abiotic speciation processes remediation of manganese from the environment has been also been attempted and is summarized in Table 1.

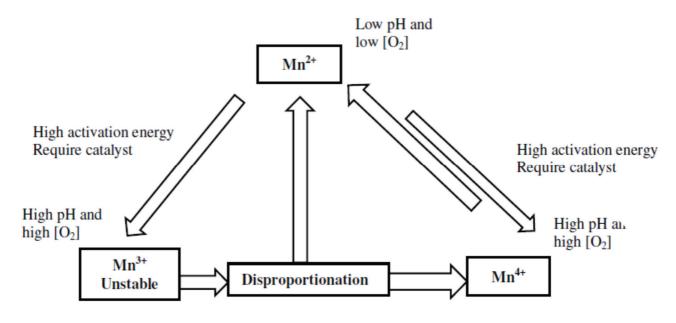


Fig. 1: Abiotic speciation of manganese in environment.

Table 1: Manganese remediation by abiotic systems or active processes.
--

Abiotic system	Nature of process	Efficiency	Reference
Activated carbon	Adsorption	•	Okoniewska <i>et al.</i> , 2007
	*	-	,
Air mediated precipitation	Hydrometallurgical processes	10%	Zhang <i>et al.</i> , 2010
Air and O ₂ mediated precipitation	Hydrometallurgical processes	99.5%	Zhang <i>et al.</i> , 2010
Electrokinetic cell	Electrokinetic removal	18%	Genc <i>et al.</i> , 2009
Granular activated carbon	Adsorption	2.54 mg g ⁻¹	Jusoh <i>et al.</i> , 2005
H ₂ O ₂ and hollow fiber micro-filter	Oxidation and filtration	95%	Teng et al., 2001
Kaolinite	Adsorption	0.446 mg g ⁻¹	Yavuz et al., 2003
KMnO4 mediated precipitation	Oxidation and microfiltration	-	Ellis et al., 2000
Manganese oxide coated zeolite	Adsorption	1.123meq Mn ²⁺ g ⁻¹	Taffarel and Rubio, 2010
Mexican clinoptilolite-rich tuff (natural)	Adsorption	138.88 meq kg ⁻¹	García-Mendieta <i>et al.</i> , 2009
Mexican clinoptilolite-rich tuff (Sodium modified)	Adsorption	232.55meq kg ⁻¹	García-Mendieta <i>et al.</i> , 2009
Na ₂ CO ₃ mediated precipitation	Hydrometallurgical processes	90%	Zhang et al., 2010
NaOH mediated precipitation	Hydrometallurgical processes	71%	Zhang <i>et al.</i> , 2010
Natural zeolite	Adsorption	0.259 meq Mn ²⁺ g ⁻¹	Taffarel and Rubio, 2010
Natural zeolite tuff	Adsorption	10.0 mg g ⁻¹	Rajic et al., 2009
Oxidation by ozone	Oxidation of manganese	83%	El Araby et al., 2009
Polyacrylic acid (chelating polymers) in combination	Chelation of Mn	-	Han et al., 2007
with ultrafiltration			
SO ₂ / air mediated precipitation	Hydrometallurgical processes	99.5%	Zhang et al., 2010
SO ₂ -O ₂ gas mixtures mediated	Precipitation of Mn as oxide	-	Schulze-Messing, 2007
precipitation	_		-
Ultrafiltration in conjunction with an in-	Oxidation of Mn	86%	Choo et al., 2005
line prechlorination			

Biotic speciation

Although, the oxidation of Mn^{2+} to higher oxidation states is thermodynamically more favourable, but because of higher activation energy requirement the process necessitates involvement of reductants or microbial enzymes (Davison, 1993; Miyata *et al.*, 2004). Some of the microorganisms grow well in presence of high metal concentration and play important roles in biogeochemistry (Gadd, 2010). These microbes can be isolated from the source sample directly or by enrichment methods to study their interaction behaviour in respective environment and bioremediation potential (Sinha and Khare 2011; Sinha *et al.*, 2013).

In late nineties the environmental data and the redox characteristics of oxidized manganese intrigued many investigators to speculate that there might be some role of microbes wherein they may be undergoing coupled anaerobic respiration linked reduction of metal to oxidation of organic carbon for growth (Nealson et al., 1992). Then after many microbial systems like bacteria, fungi and algae have been isolated to study their interaction with manganese and found to be playing vital role in manganese biogeochemistry. Many of these microbes accelerate the catalysis rate of Mn²⁺ oxidation much higher than natural abiotic oxidation (Nealson, 1983). Microbial communities like Bacillus sp. SG-1, Leptothrix discophorastrain SS-1 and SP6, Pseudomonas putida strains MnB1 and GB-1, and Pedomicrobium sp. ACM 3067 (Brouwers et al., 2000; Geszvain et al., 2013; Webb et al., 2005; Ridge et al., 2007; Saratovsky et al., 2006; Villalobos et al., 2003), fungi Acremonium, Paraconiothyrium, Phanerochaete, Cephalosporiumsp., Coniothyrium, Periconia sp., Sporothrix sp., Phoma (Santucci et al., 2000, Sasaki et al., 2006; Saratovsky et al., 2009; Timonin et al., 1972) and algae like Gloeothece Magna and Cladophora (Duggan et al., 1992; Mohamed, 2001) play an important role in the transformation and speciation of manganese in the environment along with the abiotic processes.

Manganese biogenesis has been extensively characterized in bacterial systems. Bacteria catalyse the oxidation of Mn²⁺ either directly or indirectly. Indirect Mn²⁺ oxidation is carried out by microbes by modifying the pH of the surrounding medium along with the redox environment (Teboet al., 2004). They may also release metabolites of organic or inorganic nature that act as chemical oxidant for Mn²⁺ (Gounot et al., 1994). In direct oxidation process, the oxidation is carried out by the cellular polysaccharides (Beveridge, 1989; Ghiorse and Hirsch, 1979) or proteins or enzymes (Adams and Ghiorse 1987; Jung and Schweisfurth, 1979; Miyata et al., 2007; Okazaki et al., 1997; Tebo et al., 2005). Molecular and biochemical studies in bacterial system like Leptothrix discophora SS-1 (Brouwers et al., 2000; Corstjens et al., 1997) Pseudomonas putida strains MnB1 and GB-1 (Caspi et al., 1998; Geszvain *et al.*, 2013), and *Bacillus* sp. strain SG-1 (Francis *et al.*, 2002; Francis and Tebo, 2002; van Waasbergen *et al.*, 1996), *Pedomicrobium* species (Ridge *et al.*, 2007) and the *Erythrobacter* (Francis *et al.*, 2001) have revealed that the Mn^{2+} oxidation is mainly carried out by the enzymes similar to multicopper oxidases. Multicopper oxidases are multi-domain family of enzymes. These enzymes utilize multiple types of copper ions as cofactors to oxidize different organic and inorganic substrates (Solomon *et al.*, 1996).

Initially the Mn²⁺ is oxidized to Mn³⁺ through one electron transfer, later on Mn³⁺further undergoes oxidation to Mn⁴⁺. Thus, it is believed that Mn³⁺solid phase minerals such as feitknechtite (B-MnOOH) or hausmannite (Mn₃O₄) are the main product of the enzyme catalyzed Mn²⁺ oxidation reaction. These minerals may further be transformed into Mn⁴⁺ oxides abiotically via disproportionation and protonation reactions. The oxidation of Mn³⁺ to Mn⁴⁺ might also proceed without undergoing through solid phase intermediate, in this caseMn⁴⁺ formation proceeds by (i) dissociation of Mn^{3+} from the enzyme (ii) enzyme mediated one electron transfer oxidation of Mn³⁺ to Mn⁴⁺ or (iii) two electron transfer reaction. Study on marine Bacillus sp. strain SG-1 spores (Webb et al., 2005) has also shown that oxidation of Mn²⁺ to Mn⁴⁺ is the outcome of two consecutive one-step electron transfer processes. Both consecutive steps are mediated by putative multicopper oxidase, MnxG, resulting Mn³⁺ as transient intermediate. With above manganese oxidizing property of microorganisms exploring them for the removal of soluble manganese from the environment seems promising. Many remediation processes attempted based on manganese oxidizing abilities of different biological systems and are summarized in Table 2.

Use of immobilized microbial cells for manganese bioremediation

Immobilized of microbial cells and enzymes provide viability and cost effectiveness to the process. Hence, for the removal of heavy metals from environment, application of immobilization of microbial cells and enzymes has been used in many bioremediation methods (Li *et al.*, 2008, Moreno-Garrido, 2008, Sinha *et al.*, 2012; Sinha and Khare, 2012). There are very few reports on microbial bioremediation by immobilized cells. Some of these are summarized in Table 3.

Conclusions

Need for the removal of manganese from the environment seeks development of reliable and eco-friendly processes. To accomplish this, the use of natural sources like microbes seems promising. Of the various biological systems, the use of manganese oxidising microbial strains are relatively easy in way that they form insoluble manganese oxides which can be separated out easily,

whereas immobilized microbes have an advantage of easy handling and large-scale applications. However, we need more to understand the biochemical and molecular mechanisms operation in microbes during interaction of manganese, so that they can be more efficiently and with maximum potential can exploited to remove the excess manganese from the environment. Also, manganese containing minerals like oxides and hydroxides play vital role in the bioavailability and movement of other heavy metals. It is therefore becomes more important to understand more about its geo-microbiology and biogeochemical cycles.

Table 2: Manganese remediation by using biological systems

.

Biological system	Nature of process	Efficiency	Reference
Bacillus sp.cells	Accumulation	Complete removal	Sinha et al., 2011
Bean pod waste	Adsorption	23.4 mg g-1	Budinova et al., 2009
Blakesleatrispora	Adsorption	40 mg g ⁻¹	Gialamouidis et al.,2010
Brazilian vermiculite	Adsorption	0.52mmol g ⁻¹	da Fonseca et al., 2006
Chitin (crab-shell) demineralized	Adsorption	5.437 mg g ⁻¹	Robinson-Lora and Brennan, 2010
Chitin (crab-shell) demineralized/ deproteinized	Adsorption	0.981 mg g ⁻¹	Robinson-Lora and Brennan, 2010
Crab shell particles (<i>Portunussanguinolentus</i>)	Adsorption	69.9 mg g ⁻¹	Vijayaraghavan et al., 2011
<i>Firmiana simplex</i> L. (Thermally decomposed leaf)	Adsorption	61-66 mg g ⁻¹	Li et al., 2010
Fungus (Phoma) in presence of carbon filter	Precipitation	-	Sasaki <i>et al.</i> , 2004
<i>Gallionella</i> and <i>Leptothrix</i> (Using roughing filtration)	Oxidation of Mn and filtration	88%	Pacini et al., 2005
Leptothrix discophora SP-6	Oxidation of Mn and filtration	90%	Burger et al., 2008
Manganese oxidizing bacteria immobilized on silica gravel	Oxidation of Mn	-	Tekerlekopoulou and Vayenas, 2007
Manganese oxidizing bacteria immobilized on silica gravel (Pilot-scale trickling filters)	Oxidation of Mn and filtration	63%	Tekerlekopoulou et al., 2008
Pseudomonas sp.	Adsorption	109 mg g ⁻¹	Gialamouidis et al.,2010
Oscillatoria terebriformis	Adsorption and chemical precipitation	11.78 ± 0.98 and 9.2 ± 0.8 mg,	Gerasimenko et al., 2013
Staphylococcus xylosus	Adsorption	59 mg g ⁻¹	Gialamouidis et al.,2010

Table 3: Manganese bioremediation by immobilized microbial cells

Microorganism	Support matrix	Manganese removal efficiency	Reference
Agrobacterium tumefaciens	Amberlite XAD-4	$22 \ \mu \ mol \ g^{-1}$	Baytak and Turker, 2005
Aspergillus niger	Alginate	52.3%	Tsekova et al., 2010
A. niger	Polyvinyl alcohol hydrogel	44.6%	Tsekova et al., 2010
Chlorella salina	Alginate	40%	Garnham et al.,1992
Cyanobacteria	Glass wool mixed withensiled grass	40%	Bender et al., 1994
Leptothrix discophora	Ferromanganese nodules	90%	Hallberg and Johnson 2005
Manganese oxidizing bacteria	Silicic gravel	100%	Tekerlekopoulou et al., 2008
Pseudomonas aeruginosa Saccharomyces carlsbergensis	Multi-walled carbon nanotubes Amberlite XAD-4	5.83 mg g ⁻¹	Tuzen <i>et al.</i> , 2008 Baytak and Turker, 2004

Acknowledgements

The authors gratefully acknowledge thefinancial support provided by the Department of Biotechnology (Govt. of India).

References

- Adams LF and Ghiorse WC (1987) Characterization of an extracellular Mn²⁺ oxidizing activity and isolation of Mn²⁺ oxidizing protein from *Leptothrix discophora* SS-1. *J. Bacteriol*.**169**:1279-1285.
- Adams LF and Ghiorse WC (1988) Oxidation state of Mn in the Mn oxide produced by *Leptothrix discophora* SS-1. *Geochim.Cosmochim.Acta***52**:2073-2076.
- Balan L, Ghimbeu CM, Vidal L and Vix-Guterl (2013) Photo assisted synthesis of manganese oxidenanostructures using visible light at room temperature. *Green Chem.***15:**2191-2199.
- Baytak S and Turker AR (2004) Flame atomic absorption spectrometric determination of manganese in alloys after preconcentration onto amberlite XAD-4 loaded with *Saccharomyces carlsbergensis*. *Turk. J. Chem.***28**:243-253.
- Baytak S and Turker AR (2005) The use of *Agrobacterium tumefacients* immobilized on Amberlite XAD-4 as a new biosorbent for the column preconcentration of iron(III), cobalt(II), manganese(II) and chromium(III). *Talanta***65**:938-945.
- Bender J, Gould JP, Vatcharapijarn YJ, Young S and Phillips P (1994) Removal of zinc and manganese from contaminated water with cyanobacteria mats. *Water Environ. Res.*66:679-683.
- Beveridge TJ (1989) Role of cellular design in bacterial metal accumulation and mineralization.*Annu. Rev. Microbiol.***43**:147-171.
- Brock SL, Duan N, Tian ZR, Giraldo O, Zhou H, Suib SL (1998) A review of porous manganese oxide materials. *Chem. Mater.***9**:2619-2628.
- Brouwers G-J, Corstjens PLAM, de Vrind JPM, Verkamman A, de Kuyper M and Jong EWdeVrind-de (2000) Stimulation of Mn^{2+} oxidation in *Leptothrix discophora* SS-1 by Cu²⁺ and sequence analysis of the region flanking the gene encoding putative multicopper oxidase MofA. *Geomicrobiol. J.***17:**25-33.
- Budinova T, Savova D, Tsyntsarski B, Ania CO, Cabal B, Parra JB and Petrov N (2009) Biomass waste derived activated carbon for the removal of arsenic and manganese ions from aqueous solutions. *Appl. Surf. Sci.***255**:4650-4657.
- Burger MS, Mercer SS, Shupe GD and Gagnon GA (2008) Manganese removal during bench scale biofiltration. *Water Res.***42**:4733-4742.
- Caspi R, Tebo BM and Haygood MG (1998) c-type cytochromes and manganese oxidation in *Pseudomonas putida* strain MnB1. *Appl. Environ. Microbiol.***64:**3549-3555.
- Choo K-H, Lee H and Choi S-J (2005) Iron and manganese removal and membrane fouling during UF in conjunction with prechlorination for drinking water treatment. J. Memb. Sci. 267:18-26.

- Corstjens PLAM, de Vrind JPM, Goosen T and Jong EWdeV-D (1997) Identification and molecular analysis of the Leptothrix discophora SS-1 mofA gene, a gene putatively encoding a manganese-oxidizing protein with copper domains. *Geomicrobiol. J.***14:** 91-108.
- Crossgrove J and Zheng W (2004) Manganese toxicity upon overexposure.*NMR Biomed*.**17:**544-553.
- da Fonseca MG, de Oliveira MM and Arakaki LNH (2006) Removal of cadmium, zinc, manganese and chromium cations from aqueous solution by a clay mineral. J. Hazard. Mater. B137:288-292.
- Davison W (1993) Iron and manganese in lakes.*Earth-Sci. Rev.***34**:119-163
- Dudley L (1998) Membrane autopsies for reversing fouling in reverse osmosis. *Membr. Technol.***95:**9.
- Duggan LA, Wildeman R and Tipping E (1992) The aerobic removal of manganese from mine drainage by an algal mixture containing *Cladophora. Environ. Pollut.***57:**251-274.
- El Araby R, Hawash S and El Diwani G (2009) Treatment of iron and manganese in simulated groundwater via ozone technology.*Desalination***249:**1345-1349.
- Ellis D, Bouchard C and Lantagne G (2000) Removal of iron and manganese from groundwater by oxidation and microfiltration.*Desalination***130**:255-264.
- Francis CA and Tebo BM (2002) Enzymatic manganese(II) oxidation by metabolically dormant spores of diverse Bacillus species. Appl. Environ. Microbiol.68:874-880.
- Francis CA, Casciotti KL and Tebo BM (2002) Localization of Mn(II) oxidizing activity and the putative multicopper oxidase, MnxG, to the exosporium of the marine *Bacillus* sp. strain SG-1. Arch. Microbiol.178:450-456.
- Francis CA, Co E-M and Tebo BM (2001) Enzymatic manganese(II) oxidation by a marine αproteobacterium. *Appl. Environ. Microbiol.***67:**4024-4029.
- Gadd GM (2010)Metals, minerals and microbes: geomicrobiologyand bioremediation.*Microbiology***156:**609-643.
- García-Mendieta A, Solache-Ríos M and Olguín MT (2009) Evaluation of the sorption properties of a Mexican clinoptilolite rich tuff for iron, manganese and ironmanganese systems. *Microporous Mesoporous Mater*.118:489-495.
- Garnham GW, Codd GA and Gadd GM (1992) Accumulation of cobalt, zinc and manganese by the estuarine green microalga *Chlorella salina* immobilized in alginate microbeads. *Environ. Sci. Technol.***26**:1764-1770.
- Gazea B, Adam K and KontopoulosA (1996) A review of passive systems for the treatment of acid mine drainage. *Miner. Eng.***9**:23-42.
- Genc A, Chase G and Foos A (2009) Electrokinetic removal of manganese from river sediment. *Water Air Soil Pollut*.**197:**131-141.
- Gerasimenko LM, Orleanskii VK and Zaitseva LV (2013) Accumulation and precipitation of Mn²⁺ by the cells of *Oscillatoria terebriformis*. *Microbiology***82**: 609-617.

- Gerber GB, Leonard A and Hantson P (2002) Carcinogenicity, mutagenicity and teratogenicity of manganese compounds. *Crit. Rev. Oncol. Hematol.***42:**25-34.
- Geszvain K, McCarthy JK, Tebo BM (2013) Elimination of manganese(II,III) oxidation in *Pseudomonas putida* GB-1 by a double knockout of two putative multicopper oxidase genes.*Appl. Environ. Microbiol.***79:**357-366.
- Ghiorse WC and Hirch P (1979) Anultra structural study of iron manganese deposition associated with extracellular polymers of *Pedomicrobium* like bacteria. *Arch. Microbiol.***123**:213-226.
- Gialamouidis D, Mitrakas M and Liakopoulou-Kyriakides M (2010) Equilibrium, thermodynamic and kinetic studies on biosorption of Mn(II) from aqueous solution by *Pseudomonas* sp., *Staphylococcus xylosus* and *Blakesleatrispora* cells. *J. Hazard. Mater.***182:**672-680.
- Gounot AM (1994)Microbial oxidation and reduction of manganese: consequences in groundwater and applications.*FEMS Microbiol.Rev.***14**:339-349.
- Hallberg KB and Johnson DB (2005) Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors. *Sci. Total Environ.***338:**115-124.
- Han S-C, Choo K-H, Choi S-J and Benjamin MM (2007) Modeling manganese removal in chelating polymer assisted membrane separation systems for water treatment. J. Memb. Sci.290:55-61.
- Jung WK and Schweisfurth R (1979) Manganese oxidation by an intracellular protein of a *Pseudomonas* species.*Z. Allg. Mikrobiol.***19**:107-115.
- Junta JL and HochellaJr MF (1994) Manganese(II) oxidation at mineral surfaces: A microscopic and spectroscopic study. *Geochim.*. *Cosmo. Chim.*. *Acta* **58**:4985-4999.
- Jusoh B A, Cheng WH, Low WM, Nora'aini A and Noor MJMM (2005) Study on the removal of iron and manganese in groundwater by granular activated carbon. *Desalination***182:**347-353.
- Keen CL and Leach RM (1988) Manganese. In: Seiler HG, Sigel H and Sigel A (Eds), *Handbook on toxicity of inorganic compounds*. New York, Basel: Marcel dekkerinc. 405-414.
- Lanson B, Drits VA, Silvester E and Manceau A (2000) Structure of H-exchanged hexagonal birnessite and its mechanism of formation from Na-rich monoclinic buserite at low pH. *Am. Mineral.***85**:826-838.
- Laznicka P (1992) Manganese deposits in the global lithogenetic system: Quantitative approach. Ore Geol. Rev.**7:**279-356.
- Li H, Liu T, Li Z and Deng L (2008) Low cost supports used to immobilize fungi and reliable technique for removal hexavalent chromium in waste water. *Bioresour. Technol.***99**:2234-2241.
- Li Z, Imaizumi S, Katsumi T, Inui T, Tang X and Tang Q (2010)Manganese removal from aqueous solution using a thermally decomposed leaf. J. Hazard. Mater.177:501-507.
- Logan MV, Reardon KF, Figueroa LA, McLain JET and Ahmann DM(2005) Microbial community activities during establishment, performance, and decline of

bench scale passive treatment systems for mine drainage. *Water Res.***39:**4537-4551.

- Mariner R, Johnson DB and Hallberg KB (2008) Characterisation of an attenuation system for the remediation of Mn(II) contaminated waters. *Hydrometallurgy***94**:100-104.
- Miyata N, Tani Y, Iwahori K and Soma M (2004) Enzymatic formation of manganese oxides by an Acremonium like hyphomycete fungus, strain KR21-2. *FEMS Microbiol. Ecol.***47**:101-109.
- Miyata N, Tani Y, Sakata M and Iwahori K (2007) Microbial manganese oxide formation and interaction with toxic metal ions. *J. Biosci. Bioeng.***104:**1-8.
- Mohamed ZA (2001) Removal of cadmium and manganese by a non toxic strain of the fresh water cyanobacterium*Gloeothece Magna Wat. Res.***35:**4405-4409.
- Moore JW (1991) Inorganic Contaminants of Surface Water: Research and monitoring priorities, Springer-Verlag, Berlin, 395 p.
- Moreno-Garrido I (2008) Microalgae immobilization: Current techniques and uses. *Bioresour. Technol.***99:**3949-3964.
- Murray JW, Dillard JG, Giovanoli R, Moers H and Stumm W (1985) Oxidation of Mn(II): Initial mineralogy, oxidation state and aging. *Geochim.Cosmochim.Acta***49**:463-470.
- Nealson KH (1983) The microbial manganese cycle, in: Krumbein, W. (Eds.), *Microbial geochemistry*. Blackwell scientific, Oxford. 191-222.
- Nealson KH (1992)Microbial reduction of manganese and iron:New approaches to carbon cycling.*Appl.Environ. Microbiol.***52**:439-443.
- Nesbitt HW and Banerjee D (1998) Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO₂ precipitation. *Am. Mineral.***83:**305-315.
- Okazaki M, Sugita T, Shimizu M, Ohode Y, Iwamoto K, Jong EWde, Vde JPM and Corstjens PLAM (1997) Partial purification and characterization of manganese oxidizing factors of *Pseudomonas fluorescens* GB-1. *Appl. Environ. Microbiol.***63**:4793-4799.
- Okoniewska E, Lach J, Kacprzak M and Neczaj E (2007) The removal of manganese, iron and ammonium nitrogen on impregnated activated carbon. *Desalination***206**:251-258.
- Pacini VA, Ingallinella AM and Sanguinetti G (2005) Removal of iron and manganese using biological roughing up flow filtration technology.*Water Res*.**39:**4463-4475.
- Phillips P, Bender J, Simms R, Rodriguezeaton S and Britt C (1995) Manganese removal from acid coal mine drainage by a pond containing green algae and microbial mat.*Water Sci. Technol.***31**:161-170.
- Rajic N, Stojakovic D, Jevtic S, Logar N Z, Kovac J and Kaucic V (2009)Removal of aqueous manganese using the natural zeolitic tuff from the VranjskaBanja deposit in Serbia. J. Hazard. Mater. 172:1450-1457.

Rajmohan N and Elango L (2005) Distribution of iron, manganese zinc and atrazine in ground water in parts

- A Sinha and SK Khare (2013) Int J Appl Sci Biotechnol, Vol 1(4): 162-170 of Palar and Cheyyar river basins, south India. *Environ. Monit. Assess.***107:**115-131.
- Ridge JP, Lin M, Larsen EI, Fegan M, McEwan AG, Sly LI (2007) A multicopper oxidase is essential for manganese oxidation and laccase-like activity in *Pedomicrobium* sp. ACM 3067.*Environ. Microbiol.***9**:944-953.
- Robinson-Lora MA and Brennan RA (2010) Biosorption of manganese onto chitin and associated proteins during the treatment of mine impacted water. *Chem. Eng. J.***162:**565-572.
- Röllin HB and Nogueira CMCA (2011) Manganese: Environmental Pollution and Health Effects. Encyclopedia of Environmental Health 617–629.
- Santelli CM, Pfister DH, Lazarus D, Sun L, Burgos WD and Hansel CM (2010) Promotion of Mn(II) oxidation and remediation of coal mine drainage in passive treatment systems by diverse fungal and bacterial communities. *Appl. Environ. Microbiol.***76**:4871-4875.
- Santucci R, Bongiovanni C, Marini S, Conte RD, Tien M, Banci L and Coletta M (2000) Redox equilibria of manganese peroxidase from *Phanerochaeteschrysosporium*: functional role of residues on the proximal side of the haem pocket. *Biochem. J.***349:** 85-90.
- Saratovsky I, Wightman PG, Paste PA, Gaillard J-F o and Poeppelmeier KR (2006) Manganese Oxides: Parallels between abiotic and bioticstructures. *.J. Am. Chem. Soc.***128**:11188-11198
- Sasaki K, Konno H, Endo M and Takano K (2004) Removal of Mn(II) ions from aqueous neutral media by manganese oxidizing fungus in the presence of carbon fiber. *Biotechnol.Bioeng.***85**:489-496.
- Sasaki K, Matsuda M, Hirajima T, Takano K and Konno H (2006) Immobilization of Mn(II) ions by a Mn oxidizing fungus *Paraconiothyrium* sp. like strain at neutral pH.*Mater. Trans.***47**:2457-2461.
- Schroeder WH, Dobson M, Kane DM (1987) Toxic trace elements associated with airborne particulate matter: a review. *JAPCA***37**:1267-1285.
- Schulze-Messing J, Alexander DC, Sole KC, Steyl JDT, Nicol MJ and Gaylard P (2007) An empirical rate equation for the partial removal of manganese from solution using a gas mixture of sulfur dioxide and oxygen. *Hydrometallurgy* 86:37-43.
- Sikora FJ, Behrends LL, Brodie GA and Taylor HN (2000) Design criteria and required chemistry for removing manganese in acid mine drainage using subsurface flow wetlands. *Water Environ. Res.***72:**536-544.
- Sinha A and Khare SK (2011) Mercury bioaccumulation and simultaneous nanoparticle synthesis by*Enterobacter* sp. cells.*Bioresour. Technol.***102**:4281-4284.
- Sinha A and Khare SK (2012) Mercury bioremediation by mercury accumulating *Enterobacter* sp. cells and its alginate immobilized application. *Biodegradation* **23:**25-34.
- Sinha A, Kumar S, and Khare SK (2013) Biochemical basis of mercury remediation and bioaccumulation by *Enterobacter* sp. EMB21. *Appl. Biochem. Biotechnol.*169:256-267.

- Sinha A, Pant KK and Khare SK (2012) Studies on mercury bioremediation by alginate immobilized mercury tolerant *Bacillus cereus* cells. *Int. Biodeterior. Biodegrad.***71:**1-8.
- Sinha A, Singh VN, Mehta BR, Khare SK (2011) Synthesis and characterization of monodispersed orthorhombic manganese oxide nanoparticles produced by *Bacillus* sp. cells simultaneous to its bioremediation. *J. Hazard. Mater.***192:**620-627.
- Solomon EI, Sundaram UM and Machonkin TE (1996) Multicopper oxidases and oxygenases. *Chem. Rev.***96**:2563-2605.
- Taffarel SR and Rubio J (2010) Removal of Mn²⁺ from aqueous solution by manganese oxide coated zeolite. *Miner. Eng.***23**:1131-1138.
- Tebo BM, Bargar JR, Clement BG, Dick GJ, Murray KJ, Parker D, Verity R and Webb SM (2004) Biogenic manganese oxides: Properties and mechanisms of formation. *Annu. Rev. Earth Planet. Sci.***32**:287-328.
- Tebo BM, Johnson HA, McCarthy JK and Templeton AS (2005) Geomicrobiology of manganese(II) oxidation. *Trends Microbiol.* **13**:421-428.
- Tekerlekopoulou AG and Vayenas DV (2007) Ammonia, iron and manganese removal from potable water using trickling filters. *Desalination* **210**:225-235.
- Tekerlekopoulou AG, Vasiliadou IA and Vayenas DV (2008) Biological manganese removal from potable water using trickling filters. *Biochem. Eng. J.***38**:292-301.
- Teng Z, Huang JY, Fujita K and Takijawa S (2001) Manganese removal by hollow fiber micro filter. Membrane separation for drinking water.*Desalination***139**:411-418.
- Timonin M.I, Illman WI, Hartgerink T (1972) Oxidation of manganous salts of manganese by soil fungi.*Can. J. Microbiol.*18:793-799.
- Tsekova K, Todorova D and Ganeva S (2010) Removal of heavy metals from industrial wastewater by free and immobilized cells of *Aspergillusniger*. *Int. Biodeterior. Biodegrad*.**64**:447-451.
- Tuzen M, Saygi KO, Usta C and Soylak M (2008) *Pseudomonas aeruginosa* immobilized multiwalled carbon nanotubes as biosorbent for heavy metal ions. *Bioresour. Technol.***99**:1563-1570.
- vanWaasbergen LG, Hildebrand M and Tebo BM (1996) Identification and characterization of a gene cluster involved in manganese oxidation by spores of the marine *Bacillus* sp. strain SG-1. *J. Bacteriol.***178:**3517-3530.
- Vijayaraghavan K, Winnie HYN and Balasubramanian R (2011) Biosorption characteristics of crab shell particles for the removal of manganese(II) and zinc(II) from aqueous solutions. *Desalination* **266**:195-200.
- Villalobos M, Toner B, Bargar J and Sposito G (2003) Characterization of the manganese oxide produced by *Pseudomonas putida* strain MnB1. *Geochim. Cosmochim.Acta* **67:**2649-2662.
- Webb SM, Dick GJ, Bargar JR, Tebbo BM (2005) Evidence for the presence of Mn(III) intermediates in the bacterial oxidation of Mn(II).*PNAS102*:5558-5563.
- Webb SM, Tebo BM and Bargar JR (2005) Structural characterization of biogenic Mn oxides produced in

seawater by the marine *Bacillus* sp. strain SG-1. *Am. Miner.* **90:**1342-1357

- Whitehead PG and Prior H (2005) Bioremediation of acid mine drainage: An introduction to the Wheal Jane wetlands project. *Sci. Total Environ.* **338:**15-21.
- Whitehead PG, Hall G, Neal C and Prior H (2005) Chemical behaviour of the Wheal Jane bioremediation system. *Sci. Total Environ.* **338:**41-51.
- Yavuz Ö, Altunkaynak Y and Güzel F (2003) Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. *Water Res.* **37:**948-952.
- Zhang W, Cheng CY and Pranolo Y (2010) Investigation of methods for removal and recovery of manganese in hydrometallurgical processes. *Hydrometallurgy* **101:**58-63.