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Optimization Problem in Economics : The Cla-
ssical Method and Inequality Constraint

SHAILESH RAM BHANDARI*

INTRODUCTION

The meaning of optimization is to-find the best desirable point.
The problem of optimization may be interpreted in two ways. First inter-
pretation refers to a broad area of maximization and minimization prob:-
lems irrespective of any comstraint. The second interpretation refers
only to the constraint optimization. Although writers also talk about
unconstraint optimization, most of the problems we deal with are con-
straint optimization.in.Economics.. .The problem. of: constraint optimiza-
tion involves maximization or minimization of some ébjective function
with restrietions on choice variables. We may have more than one con-
straint and, also, constraints may be in inequality form rather than in
equality form. Any problem involving twice differentiable objective
function with n choice varisbles and m constraints (n>m) can be easily
tackled by classical method using differential calculus.

The present paper has been designed to work out how the classical
method may be modified so as to tackle the problems involving inequality
constraints. In this connection important terminologies and the popular
classical technique are reviewed, And required modifications are worked
out to tackle the problems involving inequality constraints.

EQUILIBRIUM STATE AND OPTIMUM POINT

The optimum position of dny economic unit is alse the equilibrium
position, However, it is not necessary that all the equilibrium posi-
tions should be optimum points. To comprehend it clearly we must have
idea regarding the goal equilibrium and nongoal equilibrium. Let us
first define the term equilibrium, According to one definition, an
equilibrium is "a constellation of selected interrelated variables so
adjusted to one another that no inherent tendency to change prevails in
the model which they constitute" (Machlup; 1958: 9), This definition
relates the term equilibrium with the state of rest owing to the balance
of internal forces. We do not observe any term in this definition which
relates equilibrium state to the optimum or best desirable state., Thus,
we say that all the equilibrium points need not necessarily be the opti-
mum points. The reason is that some of the equilibrium states may not
be desirable, just like less than full employment level of income,
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The equilibrium positions may be broken down between goal and non-
goal equilibrium. The goal equilibrium is defined as "the optimum posi-
tion for a given economic unit (a household, a business firm or even an
entire economy) and in which the said economic unit will be deliberately
striving for attaimment of that equilibrium" (Chang: 1984, 232). The
nongoal equilibrium is antithesis of this which results "not from any
conscious aiming at a particular objective but from an impersonal or
suprapersonal process of interaction and adjustment of economic forces"
(Chang: 1984, 36). If both market forces demand and supply are let free
to attain any equilibrium point, that is called nongoal equilibrium, If
there is government's effort to peg the price, it may be called goal
equilibrium, A goal equilibrium is always desirable, but a nongoal
equilibrium may or may not be desirable.

METHODS OF OPTIMIZATION

Over last 150 years differential calculus has been the major tech-
nique of optimization in physical sclence, geometry and engineering. In
economics also it has been usefully applied in the theory of production
and consumption., But this classical technique of optimization is in-
applicable in some cases. Accordingly the quest for applicable solution
has led to new development, that is, mathematical programming.

Classical Method

As has been sald already, the classical optimizing technique involves
the use of differential calculus. Sometimes economists talk about the
case of unconstraint optimization, in which the optimizing technique is
seme as the technique for a simple problem of maxima or minima of calculus.
Just what is required is the twice differentiable comtinuous objective
function. But practically an economist hardly come across unconstraint
optimization because of the fact that the economics is the science of
choice, caused by scarcity of resources. The common optimizing problems
we most frequently encounter in Fconomics are utility maximization subject
to the budget constraint, profit maximization subject to the resource
constraint, budget minimization subject to the utility constraint and
the cost minimization subject to the output constraint. There can be
one or more than one constraint as well, all of which are easily talked
through the Lagrangian method, provided that constraints are in equality
form.

The Lagrangian method is reviewed below:

In Economics most of the optimum points are defined at a tangency
between the level curve of the objective function and the constraint
curve. To glve a mathematical treatment to this, let the objective func-
tion and the budget constraint for two variables case be

G(xl,xz) =c, and

F(xl.xz) =0 respectively.
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If x 1s the optimum point, their slopes at x will be equal, 1.,e.:

G, (x) F, (x)
G—l-(-’-!7= -F—l?:_{_) Yy - (1)

2 2

This equality of slopes does not guarantee maximization or minimiza-

tion, because the same necessary condition results in both cases, Thus
there 1s need for the technique which fulfils this necessary condition,
guarantees maximization or minimization and still statisfies the con-
straint. It is possible to get such a technique with the help of equa-
tion (1). Writing equation (1) in another way:

6, (%) G, (x)

Fl(’-‘) = m »aaTni (2)

Supposing this to be equal to some constant A

G, (x) G, (x)
F® - F,0 A
We obtain

Gl(i) - A Fl(i) =0
_ _ oxmwm (3)
Gz(x) - Fz(x) =0

From equations (3) we can define a new function as
L(x,A) = G(x) - A F(x) ..... (4)

This equation (4) produces equation (3) as its partial derivatives,
It is well known calculus result that if a function is being maximized
or minimized its first order derivatives are set equal to zero, This
equation (4) is called Lagrangian function and 1s an alternative method
for optimization, known as Lagrangian method. ILike any maximization or
minimization problem, optimization through Lagrangian method alse involves
first order and second order conditions., The first order conditions are
to set the partial derivatives of the Lagrangian function equal to zero,
but the second order conditions vary according to the nature of the opti-
mization problem and the number of constraints,

One Constraint Case

Let the objective function and the constraint be f(xl,xz...,xn) and
8(x1,%2, ...y x) = 0 respectively. Then the corresponding Lagrangian
function is: F(X],%2y...Xp,A) = f(xl,xz,...,xn) + A g(xp,x9,..., Xpn) .
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1f the function F were formed by writing f-\g rather than f+ig, the only
difference would be a change in the sign of A (Henderson and Quant; 1980:
381).

First order conditions require the first partial derivatives of F
be vanished for both maxima and minima. This condition gives as many
equations as Chere are variables. Setting the above mentioned Lagragian
function equal to zero:

oF
3;; = f1 + Agl 0

+ gy = 0

fn + kgn = 0

T g(xl,sz, S— xn) =0

As there are n choice variables the above system contains n+l equations
and n+l unknowns. The last equation of the above system ensures the
constraint.

Second nrder conditions require that the quadratic form
E % fij dx; dxj
i=1 j=1
For a one constraint case they are satisfied if the bordered Hesslan
determinants |fz|, |fa], |Bsl, |f.|, ete. alternate in sign starting
from positive. Seconi order cond?tions for minimum will be satisfied
1f they all are negative. The bordered Hessian determinants, i.e.
|Hy|, 13|, |f|, etc., are obtained by bordering the principal minors
of the Hessian determinant by a row and a column containing the first
partial derivatives of the constraint. The element in the southeapt
corner of each of these arrays is zero. It 1s to be noted that the
subscript shows the order of Hessian determinant. For instance:

F

be negative for maximum and positive for minimum.

F F g
L3 Fio 8 11 "12 "13 °l

[Hy| = | Fpy Fpp 8 | 3 |8,] =
0 F

Fyy Fop Fo3 8 etc.

31 Fa2 F33 83
gl 82 33 0

g g9
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Two or More Constraints Case

Let the objective function and the two comstraints be £(x3, %9,...,
xn), glxy, x2,..., Xp) = 0 and g2(x], xy,..., Xp) = 0 respectively. The
corresponding Lagrangian functions is;

Fuf (xl, Xyyeney xn) + Algl(xl, Koy veny xn) + Azgz(xl, Ko eeny xn)

The first order conditions are as usual, that is, to set the firsgt
partial derivatives equal to zero., It is shown below:

oF .1 2
T EL Mgt e =0
oF 1 2
B, " Bt gy + e, = 0
]
oF 1 2
X ?n * Algn i AZgn =0
n
oF 1
EX; =g (xl, Xpp ceeny xn) =0

Q
e}

2
EX; - g (xl, Xgp eeeey xn) = 0

The last two equations ensure the constraints, The second order
conditions are satisfied if the bordered Hessian determinants

. 1 2

i Fip Fi3 F,oep g

F F F gl g2 F F F F g1 gz

11 “12 Fi3 & g 21 22 Ta3 Fyy 8, g

1 2 1 2

Fa1 oy Fp3 & &5 . [Py Fio F33 Fy g3 g5

1 2 1 2

a1 Fap Fi3 85 85| |, F, P13 Fuy 8, g
1 1 11 1 g

&, & &g 0 o0 €1 8 & g 0 o0
2 2 2 2 2 3

€. 8 & 0 o0 €1 & & g 0 o0

etec, alternate in sign starting from negative, and those for, minimum

are satisfied i1f they are all positive. "If there are m<n conétraints,
border the principal minors of order m+l through n with the partial
derivatives of the m constraints. The second order conditions for a
maximum will be satisfied if the determinants alternate in sign starting
with the sign of (—l)m+1, and those for a minimum will be satisfied if
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211 the specified determinants have a sign of (-1)™." (Henderson and
Quandt; 1980: 383). The principal minor of order mt+l means that deter—
minant which involves the first mt+l principal diagonal elements of the
Hesslan determinant.

The classical optimizing technigque has some 1imitations, One weak-
ness is that, "While the first and second-order conditions in terms of
derivatives or differentials can normally locate relative or local ex-
treme without difficulty, additional information or further investigation
15 often required for identification of absolute or global extreme."
(Chang: 1984, 431), Over and above this, we will have difficulty in the
case of the functions which are not twice differentiable, "The more
serjous limitation of the calculus approach is its inability to cope with
constraints in the inequality form" (Chang; 1984: 431).

A NOTE ON LANGRANGIAN MULTIPLIER

The Lagrangian multiplier has & very important implication. It shows
the effect of one unit change in the constant of a constraint on the opti-
mum position. It is remarkable that while interpreting the Lagrangian
multiplier it should be taken-care of how the Lagrangian function has
been formulated. Tor example, given the objective function U = f(ql,qz)

subject to the constraint M= P4 + Pydgs we can formulate Lagrangian

function in four different ways:

1. L =f(q)qy) + 2= p9q - Pydy)
2. L= £(qy,qy) - AM - Pydy - P,4,)
3. L= £(q,qy) + Apyq) ¥ Pydy ~ ¥)
4. L= £(q;,9)) - Mpyay + Py - )

In case of 1 and 4, 1f A 1s positive then omne unit increase in M
leads to an increase in U by the value of A and vice versaj and, in case
of 2 and 3, if A is positive then one unit increase in M leads to a
decrease in U by the value of A and vice versa. Thus, in the problem
of consumers' utility maximization subject to the budget conmstraint, A
may be interpreted as the marginal utility of money.

CASE OF INEQUALITY CONSTRAINTS

Inequal ity constraints are more practical than the equality con-
gtraints. In consumers' behaviour, 1f it {s assumed that the consumer
must spend all his budget M on two commodities Qy and Oy then the con-
straint becomes : M = P3q + padg. However, the consumer may be expect-
ed to spend less than M, in that case the constraint becomesi Pyd]l +
Pody <M. Similarly, if restriction is imposed upon the consumer to
spend at least M amount of budget then the consktraint becomes: plqé +
pqu > M, In production also {nequality constraints may arise in iffe-

W

rént ways. 1f a firm is asked to produce at least 200 combined units
of X) and Xy then the constraint becomes X} + Xz 2 200, Similarly,
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if .a firm has Rs. 1000 to invest on two products Qi and Qy, then the con-
straint becomes: c¢)qy + cpqy < 1000, where c4 is per unit capital cost

on one unit production of Q4. Thus, if the assumption of equality
constraint is relaxed, then three types of constraints are possible,
namely, in equality form, in less than or equal to form and in greater
than or equal to form. We may think of the possibility of the consatraints
in strict inequalities.

Optimization with Inequality Constraint

In the case of inequality constraints the same first-order and
second-order conditions are to be satisfied. The only difference lies
in the way of tackling the constraints. Suppose that we have an objec-
tive function and constraints as follows:

optimize an(xl, Kyy eerees xn)

1
subject to g_(xl, Koy iesesy xn) M
2
g (xl, Ky veerrs xn) 2 M,
3
8 (X Xgy veeney X)) S My
f@vxp.““,ﬁ)z%

X2 0, iml1l,2,.....4n

Here we have n choice variables and m constraints. In the case
of equality constraints it is required that n should be greater than
m. But in the case of inequality constraints n may be less than m,
greater than m, or may be equal to m.

The Solution

The solution to the above problem is not straight forward as com-
pared to the problem with equality comstraints. In the above problem
constraints may be inconsistent; finite optimization may not be possible
even if the constraints are consistent; there may be interior solution;
or, there may be boundary point solution. Concerning the consistency
of the constraints, glven the set of whole constraints if any two of
them are inconsistent tlien the whole should be treated as inconsistent.
Sometimes we can easily detect inconsistency by observing the constraints.
But this is possible only in the case of small number of choice variables.

To solve the above problem it is essential first to check whether
the constraints impose a Teal limitation or nmot. Thus our first step
is to try to optimize without constraints. It means, our problem is:

Optimize (max or min): F=f(x1, Kyyerrery xn), x, 2 0.




60/The Economic Journal of Nepal

This may or may not give free optimum, i.e. optimum without con-
.straint, which depends upon the convexity or concavity qf the objective
function. A strictly concave objective function gives free maxima and
a strictly convex objective function gives free minima. In this connec-
tion there are different possibilities which we shall explain pointwisely. ¥

1, If the objective function gives free optimum point then we check
whether the constraints are satisfied at that point or not. If it is
found that all the constraints are satisfied at that point then we con-
clude that the constraints impose no real limitation and the optimum
point without any constraint is the required solution.

Example 1. Max: z = 60x + 34y - 4xy - 6x% - 3y2 +5
Subject to: x+y<10
3x + 2y x 20
xy > 12
X, y20

If we try to maximize this objective function without constraint, then
we get maxima at (X = 4, y = 3) where all the constraints are satisfied.
Thus we conclude that the comnstraints impose no real limitation and the
point (X = 4, ¥y w 3) 15 the solution.

2, Sometimes it is possible that free optimum exists but constraints )N
are not satisfied. It means that the constraints impose a real limita-
tion and there is also a possibility of inconsistency of constraints.
Practically, the chances of inconsistency increases as the number of
constrainte increases. To solve the problem in this situation, we first
distinguish those constraints which are not satisfied at the point of
free optimum, Then we form different Lagrangian functions taking only
one constraint, in equality, in each; and, we try to solve them. This
glves us as many solutions as the number of limiting constraints, Then
at every solution we have to check whether all the constraints are
sarisfied or not. If all the constraints are found to be satisfied at
only one point, obviously that very point is the final solution. In
case it 1s found that all the constraints are satisfied at more than
one point then the best desirable is selected by comparing values at
different points.

If none of the solutions given by the Lagrangian functions with
one constraint satisfles all the constraints, then we should proceed
to form all the possible Lagrangian functions with two independent and
consistent constraints, in equalities, in each. Again, we try to solve
those Lagrangian functions and try to find final solution. If it,
again, does not give solution, we proceed to form all the possible
Lagrangian functicns with three independent and consistent constraints;
and try to solve them. This procees should be continued until we £ind \
that solution, where all the constraints are satisfied; or, until the
number of the ‘constraints in each Lagrangian function reaches n-1,
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where n is the number of the choice variables. The reason behind doing

this 1s that given a set of simultaneous equations there cannot be more

than that number of independent equations as there are choice variables;
therefore, we have at least one equation from objective fumction. If it
still does not give solution satisfying all the constraints, we try for

corner point solution., If it is still impossible to find solution then

we conclude that constraints are not consistent.

Example 2. Max: z = 60x + 34y - 4xy - 6x2 - 3y2 + 5
subject to: x +y £ 6
2x +y <10
x + 3y 5 14
Xy > 5

X, y20

Here, the objective function gives free maxima at (x = 4, y = 3), where

the first two constraints are not satisfied meaning that they are limit-
ing constraints. Now, our task 1s to form two separate Lagrangian func-
tions:

L = 60x + 34y - bxy - 6x° = 3y% + 5 + A (6-x-y)
L = 60x + 34y - bxy - 6x° = 35> + 5 + A (10-2x-y)

Equation lst is maximum at (x » 3.8, y = 2.2) and equation 2nd is
maximum at (x = 3.83, y »'2.33), At the point (X =3.8, ¥ = 2,2) all
the constraints are satiefied; and at the point (X =-3,83, ¥ = 2,33)

the first constraint is not satisfied. Thus the point (%X = 3.8, § = 2.2)
is the final solution.

Example 3. Max: z = 60x + 34y - 4xy - 6x> - 3y2 +5
subject tét x+y <6
2x +y < 10
xy + > 12
X, y>0

Here, free maximum is found at (x = 4, y = 3), where the first two
constraints are not satisfied. Thus we form two separate Lagrangian
functions:

L = 60x + 34y - bxy - 6x> - 3y> + 5 + A (6-x-y)

L = 60x + 34y - bxy - 6x> - 3y> + 5 + A (10-2x-y)
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As earlier, equation lst is maximum at (x = 3.8, y = 2.2) where third

constraint is not satisfied; equation 2nd is maximum at (X = 3.83,

y = 2.33) where both first and third constraints are not satisfied It

means that, we should proceed to try for cormer point solution. In this
particular problem we now need to find all the corner points given by ¥
each constraint and intersection of constraints. But, as the constraints

first and third are inconsistent the set of whole constraintse are also
inconsistent.

. o By on ) 3
Example 4. Minimize: II 7Q - 2Q1Q2 + Q)
Subject to: Q; + Q, < 400
Q,Q, 2 200
Q19Q2 20

Here, the objective function gives free minima at two points (Ql-O QZ-O)
and (Q1 147 s Q2 147) both of which violates the second constraint.
Then, we proceed to form the following Lagrangian function:

L = 70 - 20,0, + Q) + A (200~ Q,Q,)

This function gives minima at (§,=20.28, Q,=9.86), where both the con-
1 2

straints are satisfied and A = 28.8. Thus, this point is the required )ﬁ
solution.
3. Problems become more complicated if’ the objective functions cannot

be optimized freely. However, even if there is no free optimum, con-
straint optimization may be possible. The reason is that, even if a

function is not strictly concave or convex it may be strictly quasi-

concave or quasi-convex.

In case the objective function does not have free optima of our
interest, then our task is to form different Lagrangian functions with
only one constraint, in equality, in each, Then we try to optimize
each of them with the help of the first-order conditions and the second-
order conditions. Nevertheless, it may or may not be possible to find
solution of our interest which depends upon the strictly quasi-concavity
or strictly quasi-convexity of the objective function. If the Lagrangian
functions with one constraint give solutions, then we check whether all
the constraints at different points of the solution are satisfied or not.
The technique is, now, same as in point 2.

It is very important that, at each solution we should check the
value of the Lagrangian multiplier in order to know the effect of the
strictly inequality part of the constraints.
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Example 5. Max: z = xy

Subject to: x + y <5

2x + 4y < 15
X + 3y > 25
X, y20

Here, the objective function do not have free maxima. Therefore, it is
required to form the following three Lagrangian functions:

L= xy+ 2 (5-x-y)
L = xy + A (15-2x-4y)
L= xy+ 2 (25-x-3y)
Solving these equations shows that equation lst is maximum at (% = 237
¥ = 2.5), which violates third constraint;: equation 2nd is maximum at
(X = 3.75, y = 1.875), which violates both the first and the third con-
straints; and, equation 3rd is maximum at (% = 12.5, § = 4.166), which
violates both the first and the second constraints. Since at no point
all the constraints are satisfied, we should proceed to find all the
possible corner points. In this particular example the constraints
first and third are inconsistent, Thus we need not proceed as the con-
straints are inconsistent.
Example 6. Max: z = xy
Subject to: x +y < 5
2x + 4y < 15
X, y20
This problem is same as the previous one, only the third constraint
has been removed. As there 1s no free maxima we need to form two
Lagrangian functions as follows:
L=xy+ A (5-x-y)

L = xy + A (15-2x-4y)

As before, equation lst is maximum at (X = 2.5, y = 2,5) and equation
2nd at (x = 3.75, y = 1,875), Clearly, only at point (X = 2.5, y = 2,5)
both the constraints are satisfied. At this point A = 2.5 implying that
as the consgtant of the first constraint decreases by one unit it will
reduce the value of objective function at the point of optimum by appro-
ximatly 2.5 units,
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Thus, the point (x = 2.5, ¥ = 2.5) is the required solution.

4. 1If the objective function cannot be optimized freely and also with
constraints, then we seek corner point solution. Such cases usually
come when we try to maximize strictly convex or strictly quasi-convex
functioni or, if we try to minimize strictly concave or strictly quasi-
concave function. In such cases we first find corner points given by
each constraint and intersection of constraints; end we try to find

that point where all the constraints are satisfied and gives best desir-
able value of the objective function.

. Sometimes, especially when objective function and constraints are
in complicated form, it is desirable to check corner points as the solu-
tion. Although it is not sure if it gives the solution, yet it may,
sometimes, save timé and resources significantly.

Example 7. Max: Il = xi + xg - 4x2 + 4

subject to: 5x, + 3x2 < 15

1
X 9%,y >0

The objective function gives free minima at (;1 =0, §2 = 2), which is

not of our interest. As the function is strictly concave, it is also
strictly quasi-concave. Thus, for maximization we seek corner point
solution. Two corner points given by the constraint are (x1 = 0, x2-=5)

and (:':1 = 3, 22 =« 0). Value of I at (:?1 =0, :':2 = 5) 1s 9 and that at
x, =3, x, = 0) is 13. Thus the point (x; = 3, §2 = 0) 1is the solution.

Example 8. Min: c=1x + X%,
2
Subject to: Xy + Xy 2 9
o XXy S 8
Xy X9 2 0

Here, the objective function is 1inear. 'We may say that c is minimum
at (il =0, §2 = 0), but the first constraint is not satisfied. Then

we form two Lagrangian functions as follows:
, 2
L=x +x, + P\ (9-x1 - x2)
L=x +x + A (8-x1x2)

Equation lst gives maxima at (il - %, X, = 2%0,'which is not of our )
interest. Equation 2nd gives minima at (il = /§, §2 - JE), where

showing that one unit reduction in the value of the constraint

1
r s
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will lead to a reduction of the value of c¢. Thus, (§1 = /8, ;2 = ¥8)
is not the required solution. Here also we should seek. corner point
solution. The corner points given by the first constraint are (il =0,

< ;2 = 9) and (il =3, §2 = 0); and the corner points given by the inter-
section of the constraints are (il =1, iz = 8) and (il = 2,37, iz = 3.38).
At every cormer point all the constraints are satisfied. The comparison
shows that ¢ is minimum at (il = 3, §2 = 0), which is the required solu-
tion,

Example 9. Minimize: 2z = 6 Qle2
Subject to: 2 Qf + Q2 > 50

Q <10
Q, Q>0

Here, if we directly try corner point solution we find that z = 0 at
(61 =5, 62 = 0), where all the constraints are satisfied. Not only
this, when 52 = 0 any value of Q, in the interval (5 < Q) = 10) gives
minima, If we minimize the objective function freely, first constraint
is not satisfied at (61 = 0, 62 = 0). The Lagrangian function with the
first constraint maximizes z at (il = /E, §2 = 40), which is not of our

interest.
Example 10. Max: I = Qi + Q1Q2
Subject to: Q, + Q) < 10
2
Q +2Q, 24

Q, Q20

Here, the objective function does not give free maxima; and correspond-
ing Lagrangian functions take complicated forms. Thus, 1t 1is desirable
to try for corner point solution._ If we check all the corner points.
We find that, at point (Q1 = 10, Q, = 0) 1T is maximum and both the

constraints are also satisfied.
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2 3
Example 11. Max: I = 7Q1 - 2Q1Q2 + Q2
subject to: Q; + q, < %00
Q,Q, > 200 ¥
QI’QZ >0
Here, the objective function does not give free maxima. Also, the
Lagrangian function with the first constraint gives two extreme points,

both being minimum points. Let us now check the corner points for pos-
sible solution, The first constraint gives two corner points (51 =0,

Q, = 400) and (51 = 400, 62 = 0), both of which violate the second con-
straint. The intersection of two comstraints gives two cornmer points

@ = 0.50063, 62 = 399.49937) end (61 = 399,.49937, 62 = 0.50063). Check-
ing the values of Il at these points shows that Il is maximum at

(61 = 0,50063, 62 = 399,49937). The same problem was minimum at

(61 = 20.28, 52 = 9.86) as shown in Eg.-4.

Example 12. Max: z = 60x + 34y - 4xy - 6x2 + 5
ty+7x <23
1 ~

0

1A

1
WS 53125

Xy Yy

v

Here, the free maxima violates the first constraint. Corresponding Lagran-
glan functions also do not pgive acceptable solutions. Thus, we need
to try corner solution, The corner points where all the ¢onstraints are

gatisfied are (% = %1, y=0), (x=0, y=1) and x=3,y=2). A

comparison shows that z is maximum at (X = 3, ¥ = 2).
CONCLUSTON

Many problems concerning optimization with inequality constraints
may be tackled by modifying the classical technique of optimization.
But actually the solution of the optimization problems with inequality
constraints is very complicated task. The techniques worked out here
are very useful in solving many problems. Sometimes, because of the
complicated forms of the equations, i,e. objective function and con-
straints, solutions will beverydifficult. Although we have techniques,
we may not be in the position to obtain final solution. Sometimes,
there may be more than one solution or infinite number of solutions
which we may fail to detect. There should be further investigations
on how the much complicated problems may be tackled in the simplest »
possible way.
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