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n Some Multivariate Analyses

BAL KUMAR K.C.*

The purpose of this study is to distinguish between four multivariable
analyses: factor analysis, multiple regression analysis, canonical cor-
relation analysis, and discriminant analysis.

FACTOR ANALYSIS

Factor analysis is now a common tool in the hand of scientists of
several disciplines used extensively to investigate the clustering of
attributes in physical, social or decision space. Ever since the pio-
neering efforts by Charles Spearman,! factor analysis has been the
domain of psychologists and psychometricians. With the advent of computer
systems, this technique has aided in the reduction and organization of
vast amount of areal data, and has contributed significantly to regional
classification schemes. Whether the technique is to be used for hypothe-
sis testing or for exploratory research is still in debate, ‘although many
geographic studies emphasize the inductive use.

Factor analysis takes thousands of measurements and qualitative
observations and "resolves them into their distinct patterns of occurrence.
It makes explicit and more precise the building of fact linkages continu-" 7
ously going on-in human mind."2 Tt involves the reduction or simplifica-
tion of a multitude of variables into a hypothetical set of variates, fewer
in number, that explain a large percentage of variance._ It attempts to
identify the characteristics which the variables have in common and which
result in their intercorrelation.

Confusion exists between factor amalysis and principal component
analysis. Principal component analysis is a generally useful procedure
whenever the task is to determine the minimum number of independent dimen-
sions needed to account for most of the variance in the original set of
variables. Principal component analysis has a number of components (k)
equal to the number of variables “tm); it takes m variables and collapses
these into another set of k variables. The new variables are called
principal components. In factor analysis k is less than m. In principal
component analysis percent total r and percent common variance ‘is the
same. In factor analysis common variance is only the proportion of total
variance explained by all the factors in particular jth component. The
communality (h?) in principal component is 1. In factor analysis it is

less than 1.
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Mathematically, in principal components, dimensions are variables and
points are observations.

In factor analysis dimensions are observations and points are vari-
ables. In principal component analysis there should be transformation of
each variable into a new set of variables (called components), such that
the following three criteria.are met to make the solution unique. (1) That
y) accounts for the maximum possible of all the variance in the set of X's
and y, for maximum possible of remaining y3 and so on. (2) Total variance
of y's = Total variance of X's or (Var yy tVar y, + ... + Var y,) = (Var
Xy + Var X3 + ... + Var Xy) and y's are orthogonal. Factor analysis does
not account for the first two criteria due to the absence of unique solu-
tion. The third criterion is set.or sometimes, dropped. Conceptually,
principal component concerns with variance (related to observation). Fac~
tor analysis is concerned with covariance and covariance with variables.,
There is only one principal component matrix which can fit to a regression
set'of data. On the other hand, there are several or infinity of factor
analysis model. The factor analysis solution is very undetermined. It
is also a grouping technique if Q factor analysis is performed.3 TFactor

‘analysis is based on a set of well-known equatiens that imply certain

assumptions concerning the variables to be analyzed. Naturally, the
application of basic model poses certain technical difficulties, as the
assumptions must fit the actual data theoretieally and operationally.4
The basic equations of factor analysis and their corollaries may be com-
pactly stated in terms of matrix algebra for any raw data matrices as
follows:

nm’ = raw data matrix: n= # of observations
m= # of variables
In general n should equal 3 (m)

I matrix of deviation scores for raw data
Z R R
nxm = matrix of. standardized data scores, i.e.,
zij ='xiy - xj where sj = standard deviation of
s]
jth column (variable) of X
S ; s . 1 T
mXm = variance/covariance matrix of raw data X where S = E:TgX; Z:
\ . . . R
mxm = variance/covariance matrix of standardized data
1 T
here = —e
(2), where V T %
R = inter-correlation matrix for data, where R = V, because

correlation between the kth and 2th variable is:
(Xkj_XL) _ I(Xik-Xk) (Xif ~ X4)

vkf = covariance

Sk SL SkSL

where Sk, SL = standard deviations SK, SL = 1 if data
are standardized.
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The basic set of equations may be formulated as:

Z3 = WiGfG + Wj.S$£-S5 + ‘Wi‘efie]j
a b c

According to Spearman, (a) there i's one general factor which affects -
all variables, (b) m specific factors, one for each variable, and (c) =
error terms, one for each variables.

The Bi~factor or group model postulates three things plus a group
model. Such as:

Zj =W4GFG + 'WiLFvf + WjSFSj + WjeFej
a b c d

where a = general factor for all variables,

b = group factor, ¢ = specific factor, and d = error.
Thurstone's common factor model (1947) postulates that k (< m), common
factors associated with two or more variables, m specific factors, and

error terms like:

Zj = Wj*1Fl + Wj-2F2 + Wj-kFk + Wj:Sfsj + WjeFe unique
element

This model is sufficient to incorporate other models. Therefore:

Sj =1 =‘wjl2 +'wj22‘+‘wj32 + v+ wjkg + sz's + wzj‘e
n’ 1-n%

In simple form, the total variance can be shown as:
. Spec. Error
Common ‘Variance Var. ' 'Var.

T T e e A A T B

The values of J@ET7I.. are factor loadings, they represent the cor=
relation of that variable j, with each factor. The common varainces are
important as they represent common elements running through the data and
resulting in high correlations. ' The specific variance is only of signi-
finance in the variable under comsideration and is unrelated to the other
variables.” The value of the square root of the sum of the common variances
for each variables is called the factor loading.® Also the communality
of variable i, is approximated by computigg the coefficient of determina-
tion resulting from the regression of i-6n the remaining. i variables in
the set. In this type of analysis only the common variance is factored,
not all of the variance, as in the case of principal component solution.
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Berry® mentioned that there existed sixteen readily available fac-
torial models. These models may be orthogonal or oblique, treat errors
in a constant manner or spread it differently among the variables, treat
loadings in a specified or unconstrained sense. Depending upon the method,
B the output may differ significantly even for the same data set. Factor
comparability requires the assumption of homogeneity,’ by using Kuder-
Richarson\formula:gyn = nyit2 - 1/ (n-1)Fit2. The indexes calculated for
two diffeféﬁfngﬁérperiods can be statistically compared using Z score.
Regarding the parsimdniousness, principal component solution was the most
desirable.? There is also a problem of maintaining invariance which re-
quires the closeness of fit of the factors from one study relative to the
factors from other studies. .Other problems such as relation between fac-
tors, selection of variables, common factors, definition of factors, non-
uniqueness of solution, level of measurement, linearity, and distributional
assumption, have been discussed elsewhere. Factor analysis is no substi-
tute for theoretical and conceptual analysis of a problem. For causal
interpretation multiple regression might prove to be better. Often facto-
rial ecologists are worried about how much variance they can explain. It
should be checked by means of computing factor scores, as well as by test-
ing for reliability and validity.10

MULTIPLE REGRESSION ANALYSIS

Multiple régression is concerned with predicting dependent variable
by two or more independent variables., ‘The degree to which the dependent
and the independent variables covary is. reflected by the proportion of
the total variation of the dependent variable that is associated with the
variations of the independent variables. Multiple regression may also
'be viewed as a stepwise procedure in which the dependent variable is re—
gressed on an independent variable holding other independent variables
constant statistically.. Similar reasoning applies to partial regression
coefficients~-the rate of. change in Y for a unit change in any indepen-
dent variable is computed, holding constants the effects of the other
independent variables statistically. Regression coefficients are beta
values which may be compared directly in order to evaluate the relative
importance of each independent variable.  If stepwise procedure is not
used’ the multiple correlations cause problem of multi-collinearity. The
partial correlation coefficients are also employed in stepwise regression
procedure in which a sub-set of the total number of independent variables
is chosen in order of importance of explaining the variability in the
dependent variable. Partial regression coefficients are preferable when
attention has been focussed on the prddiction equation itself. Whereas;,
partial correlation coefficients are preferred when one is interested in
knowing the measure of correlation and variability. The linear equation
is of thevform: Y=o + Ble + 82X2 + ...+ Sme + € or using sample
¥y = a-+ blxl + b2x2 + ... bmxm + e where g=-regression or y intercept;

b = partial regression coefficient. TFor example, b, indicates a change
in y per unit change in Xl holding other variables cConstant. Multiple

regression is based on the following assumptions: for each fixed value
. of Xs, the ys are:
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(1) Normally distributed, .(2) have same variance (homo-scedasticity),
(3) are independent, and (4) have mean given by y = o + BX. In other words,
for each fixed value of X, the error terms are: (1) normally distributed,
(2) equal variance, (3) independent, and (4) have mean of zero.

The criteria used to obtain the loadings in multiple regression is
such that the b values related must result in minimizing the unexplained
variation of the dependent variable given change in the independent vari-
ables. This means that the sum of squared deviation of y actual from §
estimated by the normal equation must be minimized.

(ZX 24 =b ZX & b BX:X .« . + bmIXe Xm + aZXl) or

! 2Bk Ky * 1

lZXlk+ bZZX2 + .. .+ bmIXm + . . . + Na).

Ty = b
This minimization should be through the least square method such
that, a and b will be unbiased elements of the population parameter o and

8, also the standard error of estimate will be minimized.

The matrices used to obtain b values, are:

y = XB = E, where y = column vector of estimated y's,

X = nxm + 1 = matrix of independent variables plus a column vector of
1's, B = column vector of b's to be obtained, E = column vector of

error term. XTY = XTXB- where X y = véctor of error products of depen-

dent variable y and the independent variable X. XTX = matrix of sum of
square and sum of cross products of X's. B = column vector of b's.

Therefore (XTX)_ (X )~ X XB, where: (XTX)"l is the increase of

XTX and is used to obtain (X X) -1 Ty = IB where (X X) -1 T = 1,

The squared multiple correlation coefficient is simply the vector
product of b and the predictor-criterion correlatiens (Cooley and Lohnes,
1971: 63).. The overall significance of the multiple regression can be
tested by an analysis of variance using F-ratio.ll

FACTOR ANALYSIS AND MULTIPLE REGRESSION:ANALYSIS

Differences: Although multiple correlation coefficients represent com-
munalities by means of computing common variance, they are not in strict
sense of the term the same thing. Communality depends on numbers of
factors extracted whereas, multiple correlation coefficients depend on
the number of meaningful independent variables explaining the dependent
variable. Factor analysis deals with reducing fewer number of dimensions
and helps to analyse how these dimensions may have been organized in
space. If the investigator is interested in determining how.are charac-
teristics of a set of objects can be predicted from other characteristics’
while all the measures are continuously distributed variables; multiple
regression analysis provides an analytical tool. Multiple regression
analysis, bases its interpretation on the basis of intercorrelation




Bal K.C.: Multivariate Analyses/13

matrix and the correlation of each independent variable with the dependent
variable. Factor analysis extends further through several matrices. Fac-
tor analysis is exploratory and hypethesis testing model.. Multiple re-
gression assumes that the errors-are normally distributed, however in
factor analysis it may not be so, because the first few factors explain
much of-the variance and the remaining factors can be considered residuals.
However, factor analysis employing longitudinal data does pinpoint the
pattern for the future if the nature of dimensions are relatively stable.
Multiple regression, on the other hand, although, is said to be predictive,
does not handle the longer prediction. Spatial auto-correlation is a severe
problem in regression analysis, particularly, when the size of areal units
are altered from one analysis to another.

Factor analysis assumes that relationships between variables are
linear, and thus effects are additive. Many correlation and regression
studies have shown that non-linear relationships are more likely. The
relative value of using factor analysis over traditional multiple regres-
sion is also questionable. MeyerlZ has extensively compared and contrasted

.the use of multiple regression and factor analysis from empirical data.

Examining the variables pertinent to black residential structure, Meyer
found that the same variables which are highly intercorrelated in
correlation analysis, did not correlate highly in the dimension of factor
analysis. Hence, these two methods are conceptually different, their out-
put also should be taken differently.

Similarities: Both analyses assume linearity and require interval scale
data. Of course, Berfry and Gouldl3 have used ordinal scales. Both types
of analyses deal with only one population at-a time. Intercorrelation
matrix of both types of analysis is the same, provided the data are the
same. Although factor scores and residuals are not the same, sometimes
they seem to serve the same purpose, especially for mapping purposes. From
factor analysis, one can postulate causal connections between variables of
the same dimension.l# “If these variables are examined by multiple regres-
sion they provide the identical results. Both types of analyses assume
error terms which reduce the amount of variation explained. Although
there is not much functional similarities between the two, multiple re-
gression might be a good starting point for selecting variables for fac~
tor analysis. Sometimes, this type of fishing game destroys the necessity
of conceptualization. However, for computing factor scores it is desired
to find a linear regression of a common factor. This will require the
covariance for common factors and the variance-covariance terms for the
variables. To estimate the common factor we use the loadings and, to
estimate the X's we use L. In'matrix form it will be [f) = fyJT . -1,
[X]. Where ¥ is the estimated common factor and V's are loadings. For
the case of 3 variables and 4 observations we use the following:
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where yL is one particular factor and Zj is the jth variable (Xj) in stan-
darized form (j = 1,2, ... j ... m). In matrix terms, we can specify the
whole set of m factors as

y = ZB, so that the form of
nxm mxm
the above equations is the same as for regression, except that y and B
are matrices rather than vectors.

CANONICAL CORRELATION ANALYSTS

Canonical correlation analysis is concerned with the determination
of a linear combination of each of two sets of variables on the same sub—
ject such that the correlation between the two functions is a maximum.
"Under certain conditions this analysis is equivalent to discriminant
analysis and under certain conditions it is equivalent to multiple regres-
sion."15 1t is like multiple regression except that it includes more than
one: dependent variable. Which of the two sets of variables is considered
the dependent does not matter. It is the most general form of correlation
analysis. Multiple regression is concerned with the estimation of one
predictant by a linear combination of predictors and is.a special case of
canonical correlation. The regression estimates can be found separately
for any number of predictants even though the predictants are linearly
related. If dummy variables denoting group membership are formed as pre-
dictants, "the resulting regression equations are identical to those
derived from the canonical correlation analysis."16 Furthermore, the
interpretation of coefficients has all problems attendant to the beta
coefficients of multiple regression.

"A principal distinguishing feature of different applications of
canonical analysis is the normalization requirements imposed upon the
canonical weights,"17 However, canonical correlation model séems to use
the same analytical trick to display the structure of relationships as
that of factor analysis except that the canonical model- selects linear
functions having maximum covariances between domains, and factor analytic
model selects the linear function of test having maximum variances. Cano-
nical model is an exploration of the extent to which individuals occupy
the relative position in one neasurement as they do in other.l8 We inter-
prete the interrelationships between the wvariables in each pair of both
sets on the basis of how much they are correlated in the respective vec-
tor. Each pair of canonical vector is considered independent.

This analytical technique extracts pairs of canonical varfates, one
half of each pair is associated with the X set, and the other half ig
associated with the Y set. The matrices involved are:
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From the two sets of raw data, 'a supermatrix R is formed by finding
the intercorrelations between all pairs of variables in both data sets.
Rj] contains the intercorrelations between all pairs of variables in the
X set, and Rpp contains the intercorrelations between the variables in
the Y set, Ryp and Ryj contain the intercorrelations between the variables
in the X and Y sets.i9

The loadings matrix Wx equals R VxOx~£, and the loadings matrix Wy

11

equals R22 VyQy—% .. The matrix Vx contains the standardized eigen vectors
of a matrix H, where H = R -l g ®.7lR,.. The matrix Vy contains the
? L1 12:722 21 1 1

standardized eigen vectors for a matrix G, where G = R22 R21'Ril R12'
The matrices Vx and Vy are therefore, the canonical weights which are used
to correlate the canonical variates with the original variables in Zx and
Zy. The matrices 0% and Oy are diagonal matrices containing the variance
for the canonical variates of the x and y data sets, where Ox equals
VXTRlle and Oy equals XyT R22Vy. The matrices Ox - % and 0y = %’there—

fore contain the standard deviations of the canonical variates. - The
square root of the eigen'values A is the simple correlation coefficient
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between the canonical variates and original variables., For either of the
both x and y, the percent total variance accounted for by a specific cano-
nical variate can be calculated by taking the sum of squared loadings in
appropriate one-half of the canonical variate and dividing by the number
of variables. The value is labelled Sxi or Syi depending upon the sets it
represents, 20 ’

In-addition, the redundancy measure is important, because a very large
canonical correlation coefficient could be the result of a very large zero-
order correlation of just one variable of one set with just one variable of
the other set, and the remainder of the two sets could be essentially unin-
volved in the canonical structure.2l For example, the redundancy measure,
Rdyj = Syy . Rcvl2 indicates the amount of variance in the first canonical
variate of the Y set that is accounted for by the first canonical variable
of the X set.22 If this redundancy measure is low, then a high canonical
correlation coefficient is relatively meaningless., Love and Steward
have developed a summary index of redundancy.

Ry = I Rcvi2 . syl .

It is this proportion of the total redundancy, Rdyi/RY, that determines
whether or not a pair of canonical variates is worthy of interpretation.
Another problem is to determine the contribution of a variable to the
total canonical solution. Love and Steward's another index is equal to
multiple coefficient of determination or R2 = RiZ/ERi2 . The means of
these indices for X and Y are equal to Rx and Ry.23

‘As in principal component analysis, the first pair of canonical
variates extracts the largest amount of variance from the  linear compo~
sites of original data. . The second pair extracts maximum of *the remaining
variance while remaining uncorrelated to the first pair. All of-the
variance also is extracted in canonical correlation analysis. The maxi-
mum number of independent dimensions is equal to the number of variables
in the smaller set of data. These dimensions are orthogonal to each other.

Since the canonical correlation cosfficients are arranged in descend-
ing order, significant test has been devised.24

The lambda A is distributed approximately as chi-square with (p-t)

(q-t) degrees of freedom for r canonical dimensions.
X= ./n-0.59q+ q+ 1)7 log e A d.f. = p.q
p or ¢

where n = N-1 and A=3% = (1-xi) =
l=r+l

(1=2) o (L=2) .. .(L-Aporaq
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1f this proves to be significant, the second can be tested by using 4

p or q

A= ,Hz (1 -~ Ai). For this case the chi-
i=

square has d.f. = (p -~ 1) (¢ - 1).

CANONICAL AND FACTOR ANALYSIS

Koons has suggested?d some form of factor analysis of the original
variables prior: to canonical correlation analysis. This suggestion pre-
sents difficulty of interpretation.26 Factor analytic approach may be
superfluous.  Unlike faétor analysis, in which all the variables are
treated as a single set, "Canonical analysis identifies the component
interrelationships between fwo sets .of data. Factors in factor analysis
will fail to appear in the canonical analysis."27

However Ray (1971), in number of ways advocated the usefulness of
link between factor analysis and canonical analysis. He interpreted the
canonical variates as assisted '"by their comparison identified in the
factor analysis."8 He further said: "Factor analysis is not as appro-
priate as canonical analysis for examining interrelationships between the
two sets of characteristics ... even though characteristics in both sets
suggested their interdependency."2%. Canonical analysis, like factor
analysis is a descriptive device that reduces a number of variables to
their underlying components and canonical variates, like factors, are
made up of linear functions or combination of original variables.30

In:factor analysis the dimensions may not be orthogonal (whether
oblique, or centroid, or orthogonal). But canonical correlation analysis
extracts orthogonal dimensions. ~Path analysis can incorporate more than
one dependent variable and it would also be interesting to see the causal
connection from the result of ‘¢anonical analysis. However, the task of
going from one to another analysis presents a continuous problem of vali-
dity and reliability. The only thing remained to be interpreted is the
canonical scores. There seems to be semantic differences in labelling
the analysis as "Canonical factor analysis” or "canonical correlation
analysis." This creates a considerable. confusion between factors as in
factor analysis and variates in canonical analysis. In addition, prin-
cipal component rather than factor analysis seems to have more affinity
with canonical correlation analysis, in terms of variance/covariance and
number of dimensions extracted. It -must be added that canonical correla-
tion analysis is more powerful tool, when, one has' to compare between
the variables of different-time periods.  The redundancy measure has no
equivalent in factor analysis.

Provided that the measurement scale is the same, while using factor
analysis, one has to perform two different sets of factor analysis and
then use multiple regréssion of the factor score. However, a principal

-axes factor analysis of the attribute matrix produces factor scores,
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This is an nxs matrix, where s is. the number of factors. From this matrix
it is possible to compute a new matrix A, with (n2-n) rows and s columns
which contains the distances between each pair of areas on each factor. A
factor analysis of the interaction matrix yields a factor scores matrix B,
with (n2-n) rows and b columns, where b represents the number of dlmen81ons
extracted by the factor analysis. Canonical correlation of two matrixes A
and B allows the statement of relation between the two, "Structural and
functional system."31 Steward and Love (1968) said that "if we have to
component analyze two sets of variables independently and then develop
weights which would rotate the two component structures to maximize corre-
lation, we would have a canonical solutiom.'32 Moreover, canonical factor
scores are said to be corresponding to the scores computed in principal
component analysis.33

VI. DISCRIMINANT ANALYSIS

Discriminant analysis is employed for a set of observations which are
alfeady classified in some manner (or by cluster analysis). The main pur-
pose 1s to maximize between group variance and minimize within group vari-
ance. Its most common use in geographic research is as aid in classifica-
tion. "The evaluation of classification is clearly related to so-called
"cluster analysis."

Discriminant analysis extracts N observations on m variables. These
observations are divided into t groups, with ny observations in each group.

Thus, nl + n2 + ... + nt = N. We can denote each observatioen by: xhij, L
where ith observation (i = 1,2, ... n2) id hth group (h = 1,2, ... t) on
jth variables (j = 1,2, ... m). Observations may be arranged in the ma-

trix X whlch is NXn.

" Variables

*111 *112 ... *lin

Group 1 *121 122 ... *lom

X = *131 *132 ... *ism
il Finip *142m

%911 212 ... ®2lm

Group 2 %221 %222 :

ol Fomap L. %onon

tll Xt12 *tim

Group 3 X2l *t22 ... Ftom

o 03 0

Xentl thtg thtm
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Three matrices can be defined, which contain sums of squavred deviation and
sums of cross products,

T
= : d
T = DTT DT ; G = DG" DG :  an
mXm MmN DXm

mxm MmXD NXM
A = DAT DA and T =G+ A
mXm mXn Dxm

Equivalent matrices for y's are FT = DIV ; FG = DGV; and FA = DAV,
Similarly, we can define sums of square and cross product associated with
7
y's:

T
FTGFG = (DGV)T DGV = VTDGTDGV = VTGV and FA'FA =

(DAV)T DAV = VTDATDAV~= VTAV.b So the linear discriminant function
“can be defined as maximizing the ratio:

T ) _
A= _Yiﬁ‘z = VTAV(VTGV)'1 = vTAw lv
VGV

A statistical test is available, other than analysis of variance.

X2 = (N = E_%;E._ 1) log A
|
d.f. = M(j~1), where A = I T
. ja1 3

n. ..
The second can be tested by A1 = I L

with d.f. = (m=1) (t-2). "
DISCRIMINANT AND OTHER ANALYSIS
Discriminant and Factor Analysis

The discriminant analysis "may be interpreted as a special type of
factor analysis that extracts orthogonal factors of the measurement
[%ariables] for the specific task of displaying and capitalizing on dif-~
ferences among criterion groups.'" The discriminant analysis is similar

.to factor nalysis and to principle component analysis in identifying major
linear dimensions of classifications, much in the same way that factor
analysis tends to determine dimensions of variability.34 It is possible
to compute the linear discriminant functions which are linearly related
to the factor scores used as input to the algorithm. The coefficients
are determined in such a way that discrimination between groups is maxi-
mized. 'Thus the method has a strong similarity to principal compotent
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analysis.”3% 1In discriminant analysis, the linear discriminant functionms
are lesser in number by 1 than the number of groups extracted. If these
groups are factor analyzed by imposing the number of dimensions as many
as the number of linear discriminant functions the results may be similar,
more so particularly if we use component analysis.

Discriminant and factor analysis are in some respects as much diffe-
rent as the difference between principal component analysis and factor
analysis. Discriminant analysis requires a priori classificatiomn, factor
analysis does not. The amounts of variance explained are different. How-
ever, the Q mode factor analysis does the similar task as discriminant
analysis.,

Discriminant and Regression Analysis

Similarities: The discriminant function y = blxl + b2X2 + .e. + b Xp is

the form of the multiple regression equation except that the constant is
.omitted. "In classifying observations, this value would be of no impor-
tance since it is the same for all items. The values of b coefficients

are obtained by application of the least square method."3® The analysis
of variance for discriminant analysis is basically the same as it is for
multiple regression analysis.

Discriminant analysis can also be used as a test of whether regres-
sion of a criterion oii a set of measurements is nearly linear or not. If
the regression of the criterion scores on the measurements is truely
linear;, only one discriminant function should be obtained. If more than
one discriminant function is obtained, the regression should be non-
linear.

Differences: The question attacked by discriminant analysis is different
from the question answered by the multiple regression technique.37 No
matter how the discriminant analysis turns out, whatever it says is new
information not supplied by the multiple regression technique. The dis-
criminant analysis does what the multiple correlation approach does not.
It uses group membership as the criterion and tries to maximize between
variance and minimize within variance. The multiple correlation technique
applied to one group ignores all the data from other groups. The discri-
minant analysis employs all the data from all the groups. The discrimi=-
nant technique requires the same kind of measurement on all the members
of all the groups. Otherwise, there would be no basis for differentiating
the groups. There is no basis for between groups comparison by means of
multiple regression technique.. In spite of these differences of the two
techniques, sometimes they have been taken as the same. ‘Regression equa-
- tions are not always to . be preferred to discriminant function like it is
to canonical fumctions, ' When the number of groups is large, analysis of
the multi-dimensional discriminant space is difficult and: involves addi-
tional assumptions.. Regression analysis is designed to answer the ques-
tion, "What am I best at," discriminant analysis is de51gned to answer
the questlon "What group am T most 1ike?'"'38
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Discriminant and Canonical Amalysis

Glahn - has  shown that the discriminant analysis solution is
H, equivalent to the canonical correlation solution, the purposes of both

of these are, however, different. Canonical correlation does not classify,
discriminant does. '

The first canonical variate would give the best quadratic function
of X for discriminating between groups only in terms of quadratic trans—
formation but not in terms of linear transformation. However, both types
of analysis assume the main diagonal ewual to 1 like in principal component
analysis. If two different sets of groups are used, canonical analysis
would give interesting results, particularly when we have to compare be-
tween two periods. : )

CONCLUSION

Procedures. of multivariate analyses are concerned with the problem
of reducing the original set-space to the minimum number of dimensions in
order to describe relevant information contained in the original observa-
tions. Models which are not criterion orxiented and which have logical
implications of systematic correlations within self of measurement fall
under the rubric of factor analysis. When the researcher is interested
in determining how one characteristic of variables can be prdicted from
other characteristics, multiple correlation is useful. When cne is try-
ing to handle two sets of data of the same subject canonical correlation
ol analysis may be important, which extracts orthogonal dimensions of common
variance or redundancy between the two sets. Discriminant analysis is
useful in examining the group membership of ‘individuals in such a way
that the ratio of the among-groups to the within groups sums of squared
deviations from group means on this discriminant function is maximized.
The superiority of one type of analysis over another and their complemen-
tary-uses depend upon a researcher's interest and what he is trying to
accomplish. - '
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