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Abstract
The study focuses on the one dimensional Advection-Dispersion Equation (ADE) to study the
dynamics of concentration of water pollution when the pollutants at the source is increasing
uniformly and exponentially. Analytical solutions are obtained by using Laplace transform
and numerical solutions are by Finite Difference Method (FDM). The steady state case is
studied. The dynamics of pollution concentration along the length of river channel are shown
through two dimensional plots by varying the rate of added pollutants, cross sectional area
of river and water flow velocity. The pollution concentration decreases along the length of
river (downstream) for each analysis. The analytical and numerical solutions are shown in
three dimensional plots. The analytical and numerical solutions are compared with the help
of relative error. The relative errors calculated for uniform and exponential increment of
pollutants at the source are compared while studying the dynamics of the concentration. The
environmental and chemical engineering may substantially benefit from such studies.
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1 Introduction

The rapid and unplanned development of urbaniza-
tion, unregulated industries and highly dense pop-
ulation in the urban areas are becoming a seri-
ous problem in the natural environment [1]. More
specifically, the degradation of the natural environ-
ment are due to poor waste management, public
transports, excessive use of pesticides in agricul-
ture, deforestation, release of toxic materials from
industries, unmanaged drainage and many more

[1]. In some Eastern philosophies, water is often
metaphorically linked to human civilization. How-
ever, contamination in these water resources like
pond, river and lake at the urban areas poses a sig-
nificant challenge to the communities, vegetation
and other species that rely on them [1]. The ma-
jor causes for these water pollution are unmanaged
growth of urbanization, industries, and lack of pub-
lic awareness. Indeed, rivers play a crucial role in
aquatic ecosystems by transporting water and nu-
trients to various areas [2]. However, when contam-
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inated with pollutants, these waterways can become
hazardous to human health and other species. Con-
sumption of contaminated water or exposure to pol-
lutants can lead to sickness and even death among
both humans as well as wildlife. These highlight the
critical importance of protecting water sources from
pollution [3]. As per a recent World Health Organi-
zation (WHO) report, inadequate water quality is
responsible for 3.1% of fatalities and contributes to
80% of illnesses [4]. In the study of water pollution,
biochemical oxygen demand (BOD) serves as the
gauge for assessing water pollution levels [5]. This
analysis employed most of the parameters outlined
by Pimpunchat et al. (2007), under the assump-
tion that the predominant pollutants are biochemi-
cal wastes [6]. For instance, Bagmati river is widely
recognized as the most polluted river in Nepal with
its biochemical oxygen demand (BOD) consistently
on the rise [7] (See, Fig. 1). The extreme BOD is
achieved due to the consequence of high levels of
organic matter, high iron, and low dissolved oxy-
gen [8]. Industrial waste and drainage from urban
dwellers are responsible for the main source of BOD
loads, leading to the increased concentration of the
pollutants along the river. Prior studies on the wa-
ter quality of Bagmati river revealed the degrada-
tion in its lower portion with several significant pa-
rameters that exceeded the limits set by the Na-
tional Surface Water Quality Standards and Clas-
sification [7]. The ongoing deterioration of water
quality in the Bagmati river, revered as a holy river,
serves as a compelling motivation for researchers to
conduct systematic studies on water pollution. Pol-
lution in river channel takes place due to disposal of
waste materials from point and non-point pollution
sources [5].

Understanding the transport and dispersion of pol-
lutants from the source to body across the medium
can substantially contribute for identifying sources
of pollution, assessing the impact of contaminants
on aquatic ecosystems, guiding and implementing
pollution control measures and facilitating public
awareness [1]. In overall, understanding, manag-
ing, and mitigating the impacts of pollution on wa-
ter resources are the important aspects in the study
of water pollution [6]. To describe the pollution dis-
persion in the water body, physical and mathemati-
cal models are developed. Physical models are small
scale representations of the water body. However,
numerical experiments using mathematical models
can cover the larger domain. These mathematical
models are divided into statistical and deterministic
models [1]. Statistical models rely on the analysis
of historical monitoring data, while deterministic
models are constructed based on mathematical de-
scription of physical processes.

Figure 1: Polluted Bagmati river (Left) and BOD
Status in Bagmati river at major locations (cities)
at different years (Right) [8]. BOD is in rise over
time (t) and location (x), where the river flows
downstream. More specifically, BOD contents con-
sistently exceeded the limit for moderately con-
taminated water (2-8 mg L−1) and even crossed
the threshold for treated municipal sewage (20 mg
L−1).

For the mathematical models to study water
pollution, various conservation equations have been
developed to describe the movement of substances
subject to both advection and diffusion [9]. Advec-
tion refers as the transport of substances by the flow
of water and dispersion refers to the spreading of
substances due to concentration gradients, typically
from areas of higher concentration to areas of lower
concentration [6]. With the rise of environmental
engineering and the need to model the transport of
pollutants in underground and surface water, the
advection-dispersion equation gained prominence
and is developed during the latter half of the 20th
century [9]. Due to the reliability, the advection
and dispersion equations have been emerged in sev-
eral fields, including environmental sciences, chem-
istry, and physics. These equations are incredibly
employed for the spreading of pollution which may
take the form of any substance (gas, liquid or solid)
or energy ( radioactivity, heat, sound, or light) [10].

Marusic [11] developed a model to describe the dis-
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persion of pollutants in systems resembling rivers
over the temporal changes in pollutant concentra-
tions. Pochai et al. [12] proposed a convection-
diffusion model with constant coefficients to opti-
mize contaminant levels in waste water treatment
and successfully solved it by employing the finite
element method. The primary objective was to re-
duce the initial cost of water treatment, thereby
achieving more cost-effective treatment solutions.
Later on, it was extended to two dimensions by
Tabuenca et al. [13]. The advection-diffusion equa-
tions are employed for various prospective: predic-
tion of the transport concentration of pollutants
(Johari et al. [14]); contamination of rivers (Pim-
punchat et al. [6]); deriving pollutant concentra-
tion field (Miller et al. [15]). Poudel et al. [?, 10],
solving one dimensional ADE for pollutant concen-
tration with zero dispersion and steady state cases
are analyzed for oxygen concentration with zero
as well as non zero dispersion coefficients. Find-
ing the analytical and numerical solutions for the
developed models are another important aspects
of this field. Lots of efforts have been made in
finding analytical solutions in some states and re-
duced situations using different approaches. The
example includes the use of Laplace transform and
with Greens functions for pollutant concentration
(Carslaw and Jaeger [17]; Poudel et al. [10]); fi-
nite difference approach in semi-infinite mediums
(Savovic and Djordjevich [18]); semi infinite do-
main with zero initial concentration (Van and Alves
[9]); Laplace transform approach for the temporally
and spatially dependent solute dispersion in a one-
dimensional semi-infinite porous medium (Kumar
et al. [19]).

The purpose of the study is to obtain the analyt-
ical and numerical solutions of advection disper-
sion equation modeled for uniform and exponen-
tial increment of pollution concentration at point
source and hence observe the dynamics of pollution
concentration at different spatial points along the
length of the river. Laplace transform technique
is used for analytical solution and Finite Differ-
ence Scheme, Forward Time Central Space Scheme
(FTCSS) is used for numerical solution. The ob-
tained solutions are compared with the help of rel-
ative error for more reliable result.

2 Mathematical Model and Numerical
Method

2.1 The Governing Equation

In this model developed by Manitcharoen and Pim-
punchat (2020) [5], the involved parameters are
based on the assumption that the contaminants are
only due to the biochemical wastes [6]. The rate of
change of the pollution concentration with position

(x) and time (t) is expressed as

∂(AP )

∂t

= Dp
∂2(AP )

∂x2
− ∂(vAP )

∂x
−K1

X

X + k
(AP )+qH(x),

0 ≤ x < L, t > 0 (1)

where, H(x) is the Heaviside function as suggested
by Chapra [20] (1997), defined as

H(x) =

{
1, 0 < x < L,

0, otherwise.
(2)

Here, v is the flow velocity of water along the river,
P is the pollution concentration, Dp is the dis-
persion coefficient, K1 is the pollutant degradation
rate coefficient, q is added pollutant rate, k is half-
saturated oxygen demand concentration, X repre-
sents concentration of dissolved oxygen, and A is
the cross sectional area of the river [5]. Pollutant
of oxygen concentration quantities are considered
homogeneous throughout the cross-section of river
and can fluctuate over the its length. This pre-
sumption meets the requirement as proposed by
Dobbin [21]. For convenience, we assume that the
parameters A, q, Dp, and K1 remain constant both
spatially and temporally [22]. The pollution con-
centration at the source may increase uniformly or
sometimes, it may increase exponentially. The case
of insignificant k (k≈0) is taken into consideration
for analysis as it isnot possible to use Laplace trans-
form technique to solve advection dispersion equa-
tion [5]. From equation (1), the rate of change of
the pollution concentration P1(x, t) resulting from
a uniform increase in the pollution concentration at
source is

∂(AP1)

∂t

= Dp
∂2(AP1)

∂x2
− ∂(vAP1)

∂x
−K1AP1 + qH(x).

(3)

Similarly, the pollution concentration P2(x, t) re-
sulting from exponential rise in the pollution con-
centration at source is

∂(AP2)

∂t

= Dp
∂2(AP2)

∂x2
−∂(vAP2)

∂x
−K1AP2+q(1−exp(−λx))H(x),

(4)

where the arbitrary constant λ represents the expo-
nential pollution source term. Initially, the domain
is free of solutes. So, the initial condition is

P (x, t) = 0, x ≥ 0, t = 0. (5)
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The concentration at the origin is P0 and the con-
centration gradient is supposed to be zero at infinite
length of course. So, boundary conditions are

P (x, t) = P0, x = 0, t > 0, (6)

∂P (x, t)

∂x
= 0, x → ∞, t > 0. (7)

2.2 Analytical Solution

Let the function P (x, t) is assumed to be bounded and defined for t > 0. Let P̄ (x, s) be Laplace transform
of the function P (x, t), where s is transformed variable of t [5]. Using Laplace transform for equations
(3) and (4), we get respectively,

DpA
d2P̄1(x, s)

dx2
− vA

dP̄1(x, s)

dx
−K1AP̄1(x, s) +A(sP̄1(x, s)− P1(x, 0)) +

q

s
= 0, (8)

DpA
d2P̄2(x, s)

dx2
− vA

dP̄2(x, s)

dx
−K1AP̄2(x, s) +A(sP̄2(x, s)− P2(x, 0)) +

q(1− exp(−λx))

s
= 0, (9)

where s > 0, x ≥ 0.
The initial (5) and boundary conditions (6) and (7) are transformed respectively as

P̄ (x, s) = 0, x ≥ 0, s = 0; P̄ (x, s) =
P0

s
, x = 0, s > 0;

dP̄

dx
(x, s) = 0, x → ∞, s > 0. (10)

Using (10) in (8), we get

d2

dx2
(P̄1(x, s))−

v

Dp

d

dx
(P̄1(x, s))−

K1 + s

Dp
P̄1(x, s) = − q

sADp
. (11)

Auxiliary equation of (11) is

m2 − v

Dp
m− K1 + s

Dp
= 0. (12)

This is quadratic in m whose roots are

m1 =
v +

√
v2 + 4Dp(K1 + s)

2Dp
, and m2 =

v −
√
v2 + 4Dp(K1 + s)

2Dp
.

Thus, complimentary function and particular integral respectively are,

c1e
m1x + c2e

m2x and
q

As(K1 + s)
.

The solution of (8) is

P̄1(x, s) = c1e
m1x + c2e

m2x +
q

As(K1 + s)
. (13)

Using boundary condition (10),

c1 + c2 =
P0

s
− q

sA(K1 + s)
. (14)

Differentiating equation (13) with respect to x, we get

dP̄1(x, s)

dx
= c1m1e

m1x + c2m2e
m2x.

Again, by using boundary condition (10) in above equation, we get c1 = 0. Thus from (13), required
solution is

P̄1(x, s) =

(
P0

s
− q

sA(K1 + s)

)
em2x +

q

As(K1 + s)
.
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Also, we can write

P̄1(x, s) =

(
P0

s
− q

sA(K1 + s)

)
exp

((
γ −

√
s+ β2

Dp

)
x

)
+

q

As(K1 + s)
, (15)

where, γ = v
2Dp

, β =
√

v2

4Dp
+K1.

Now, we find the solution of equation (9) by the similar process as above. Using (10) in (9), we get

d2

dx2
(P̄2(x, s))−

v

Dp

d

dx
(P̄2(x, s))−

K1 + s

Dp
P̄2(x, s) = −q(1− exp(−λx))

sADp
. (16)

Auxiliary equation of (16) is

m2 − v

Dp
m− K1 + s

Dp
= 0. (17)

So, roots of equation (17) are

m1 =
v +

√
v2 + 4Dp(K1 + s)

2Dp
, and m2 =

v −
√
v2 + 4Dp(K1 + s)

2Dp
.

Thus complimentary function and particular integral respectively are,

c1e
m1x + c2e

m2x and
q

As(K1 + s)
− qe−λx

As(K3 + s)
where, K3 = K1 − λv − λ2Dp.

Thus, the solution of (16) is

P̄2(x, s) =

(
P0

s
− q

sA(K1 + s)
+

qe−λx

As(K3 + s)

)
em2x +

q

As(K1 + s)
− qe−λx

As(K3 + s)
. (18)

Using boundary conditions (10) and calculating same as above, we get the solution of equation (16) as

P̄2(x, s) =

(
P0

s
− q

sA(K1 + s)
+

qe−λx

As(K3 + s)

)
em2x +

q

As(K1 + s)
− qe−λx

As(K3 + s)
.

It can be written as

P̄2(x, s) =

(
P0

s
− q

sA(K1 + s)
+

qe−λx

As(K3 + s)

)
exp

((
γ −

√
s+ β2

Dp

)
x

)

+
q

As(K1 + s)
− qe−λx

As(K3 + s)
.

(19)

Taking inverse Laplace transform to the equations (15) and (19), the respective analytical solutions of
equations (3) and (4) are

P1(x, t) =
q

AK1
(1− exp(−K1t)) +

1

2

(
P0 −

q

AK1

)
exp

((
β√
Dp

+ γ

)
x

)
erfc

(
x

2
√

Dpt
+ β

√
t

)

+ exp

((
−β√
Dp

+ γ

)
x

)
erfc

(
x

2
√
Dpt

− β
√
t

)
+

q

2AK1
exp

(
v

Dp
x−K1t

)

.erfc

(
x

2
√
Dpt

+ γ
√
Dpt

)
+ exp(−K1t)erfc

(
x

2
√
Dpt

− γ
√

Dpt

)
, (20)
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P2(x, t) =
q

AK1
(1− exp(−K1t))−

q

AK3
exp(−λx)(1− exp(−K3t)) +

1

2

(
P0 −

q

AK1
+

q

AK3

)
. exp

((
β√
Dp

+ γ

)
x

)
erfc

(
x

2
√

Dpt
+ β

√
t

)
+ exp

((
−β√
Dp

+ γ

)
x

)

.erfc

(
x

2
√
Dpt

− β
√
t

)
+

q

2AK1
exp

(
v

Dp
x−K1t

)
erfc

(
x

2
√

Dpt
+ γ
√

Dpt

)

+ exp(−K1t)erfc

(
x

2
√
Dpt

− γ
√

Dpt

)
− q

2AK3
exp

((
θ√
Dp

+ γ

)
x−K3t

)

.erfc

(
x

2
√
Dpt

+ θ
√
t

)
+ exp

((
−θ√
Dp

+ γ

)
x−K3t

)
erfc

(
x

2
√

Dpt
− θ

√
t

)
, (21)

where, θ =
√

v2/4Dp + vλ+Dpλ2.

2.3 The steady state case
Taking t→∞ to the equations (20) and (21) gives the steady state case as follows

P1(x, t → ∞) =
q

AK1
+

(
P0 −

q

AK1

)
exp

((
γ − β√

DP

)
x

)
, (22)

and P2(x, t → ∞) =
q

AK1
− q

AK3
exp(−λx) +

(
P0 −

q

AK1
+

q

AK3

)
exp

((
γ − β√

Dp

)
x

)
. (23)

Now, taking x→∞ to calculate downstream pollutant concentration, we get

P1(x → ∞, t → ∞) = P2(x → ∞, t → ∞) =
q

AK1
. (24)

2.4 Numerical technique
Here, we use Forward Time and Central Space Scheme (FTCSS) to find numerical solution of equations
(3) and (4). These equations in finite difference form can be written as [5],

Pn+1
1m − Pn

1m

k
=

Dp

h2
(P1m+1 − 2Pn

1m + Pn
1m−1)−

v

2h
(Pn

1m+1 − Pn
1m−1)−K1P

n
1m +

q

A
, (25)

Pn+1
2m − Pn

2m

k
=

Dp

h2
(P2m+1 − 2Pn

2m + Pn
2m−1)−

v

2h
(Pn

2m+1 − Pn
2m−1)−K1P

n
2m +

q

A
(1− exp(−λxn

m))

(26)

where, m and n refer to the discrete step size h and k respectively. The initial and boundary conditions
(10) can be written respectively as [5]

Pm,0 = 0, x ≥ 0; P0,n = P0, t > 0; PM,n = PM−1,n, x → ∞, t ≥ 0. (27)

The stability condition is Dpk/h
2≤1/2 for the above schemes.

3 Results and Discussion

We comparatively study the dynamics of the wa-
ter pollution concentration over the river channel
when the pollutants at the source increases uni-
formly and exponentially along with the variation

of the rate of added pollutant, cross section area
of the water channel, and flow velocity over time.
The parametric values are extracted from the dif-
ferent existing literatures. For various plots to
study the concentration dynamics, the values for
involved parameters are taken as: Dp=10 m2 hr−1,
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v=4 mhr−1, A=10 m2, K1=1 hr−1, P0=1 kgm−3,
q=1.02 kgm−1 hr−1 and λ=0.06289 [5].

3.1 Comparison of dynamics of con-
centrations P1 and P2

Keeping the same parameter values, the dynamics
of the pollution concentrations P1 along the river
for the uniformly increasing pollutants and P2 for
exponentially increasing pollutants are revealed in
the Fig. 2.

Figure 2: Comparison of pollution concentrations
P1 and P2 at different spatial regions when the pol-
lutant at source increases uniformly and exponen-
tially respectively. The concentration P2 is higher
than P1 at the vicinity of the source of pollutant at
x = 0 and then both saturates to the almost same
level as the water flows substantially downstream.

Initially, at the source x = 0, pollution concen-
tration P2 is relatively larger than that of P1 as pol-
lutants at the source is increasing exponentially for
P2 and uniformly for P1. Both the concentrations
decrease non-linearly over the distance and time un-
til the flow travels 18 km. In this moment, the rate
of decrement of P2 is substantially faster than that
of P1. After traveling about 18 km from the source,
both the concentrations decreases asymptotically.
As a result, both graphs look like the same. How-
ever, they vary by the incredibly smaller margin.
The applied model enables to study the dynamics
for the significantly longer travel distance. How-
ever, we study only upto 30 km of travel distance.
The concentration decreases rapidly for exponen-
tial increment case rather than uniformly increment
form along the length of the river channel.

3.2 Dynamics of concentrations P1

and P2 as rate of added pollutant
varies

The concentration dynamics of pollution P1 and P2

are shown in Fig. 3 as the rate of added pollutants

q varies for q = 0.04, 1.02 and 2.00. The dispersion
rate of the pollution is the greatest when the rate
of added pollutants q is the least. On the contrary,
the rate is the least when q is the greatest.

Figure 3: Evolution of pollution concentration A:
P1, B: P2 at different spatial regions along the river
as rate of added pollutants (q) varies. The pollution
concentration decreases at slow rate as the rate of
added pollutants increases.

As a result, the effect of rate of added pollutants
q near the upstream is very less and that near the
downstream is dominant in both the cases. But in
case of Fig. 3B, the effect of rate of added pollu-
tants q is very less near the origin as it is affected by
exponential source term λ. For the case Fig. 3A,
the concentration decreases non-linearly till x=19
km and then after it goes asymptotically whereas
for the case Fig. 3B, it decreases non-linearly till
x=21 km and then after goes asymptotically. The
concentration of pollutants decreases at slow rate at
any cross section of the river as the rate of added
pollutants q increases.

3.3 Dynamics of concentration P1

and P2 as cross section area of
the river channel varies

The variation of pollution concentrations P1 and
P2 with different cross sectional area A of the river
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channel, along the length of the river is shown in
Fig. 4 as the cross sectional area of the river varies
for A=5, 10, 80.

Figure 4: Evolution of pollution concentration A:
P1, B: P2 at different spatial regions along the river
as cross sectional area A of the river channel varies.
The pollution concentration decreases as the cross
sectional area of the river channel increases.

When the cross sectional area of the river chan-
nel is less, then there is not enough space for pol-
lutants to be dispersed more rapidly. Thus, the
concentration of pollutants remains condensed and
is more for least area. Thus, the pollution concen-
tration decreases at any cross section of the river
as the cross sectional area increases. The rate of
decrement of concentration is more when the cross
sectional area is more and is less for less area. The
effect of cross sectional area is less for case Fig. 4A
and very less for case Fig. 4B near the upstream
and dominant near the downstream. The increment
of pollutants is exponential in case of Fig. 4B, so
the concentration profile near the origin seems to be
very close. But it is not so close in case of uniform
increment. For the case Fig. 4A, the concentration
decreases non-linearly till x=21 km and then after it
goes asymptotically whereas for the case Fig. 4B, it
decreases non-linearly till x=23 km and then after
goes asymptotically. In overall, the concentration
decreases along the length of river channel as cross

sectional area increases.

3.4 Dynamics of concentration P1

and P2 as flow velocity of the
river varies

The variation of pollution concentrations P1 and P2

with different water flow velocity v along

Figure 5: Evolution of pollution concentration A:
P1, B: P2 at different spatial regions along the river
as the flow velocity of water v varies. The pollution
concentration increases as the flow velocity of water
increases.

the length of the river is shown in Fig. 5.
With the increase of velocity, advection becomes
more dominant than dispersion and hence the rate
of decrement of concentration of the pollution de-
creases with increase in water flow velocity along
the length of the river. If the water flow velocity is
least, then pollutants get dispersed very near to the
origin and concentration decreases so rapidly. But
when water flow velocity is high then the concen-
tration does not get chance to disperse so rapidly
at the same position and hence rate of decrement
of concentration becomes slower. For v=2, 4 & 6,
concentration decreases non-linearly till the posi-
tion x=16, 20 & 23 km in case of Fig. 5A, and
x=17, 21 & 25 km in case of Fig. 5B, respectively
and then goes asymptotically.
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3.5 Dynamics of the concentration
as travel distance and travel time
both varies

We obtained the analytical and numerical solutions
of Advection Dispersion Equation (ADE) with uni-
form and exponential increment of pollutants at ori-
gin by employing Laplace transform technique and
Finite difference technique respectively.

Figure 6: Analytical: A and numerical: B solution
of equation (3). The both solutions do not provide
exactly same values but provide nearly comparable
values.

Fig. 6 shows the pollution concentration
P1(x, t) at each grid point of time and space. In
both cases Fig. 6A and Fig. 6B, concentration at
origin is the highest and goes down as distance in-
creases. The concentration decreases rapidly along
the distance whereas it decreases slowly along time.
The concentration at peak point i.e at x=30, t=3,
is very less approximate to zero but not actually
zero. Though values of concentration obtained from
analytical and numerical solutions are not exactly
same, they are close to each other. Thus nature of
both the three dimensional plots are same but not
exact.
Similarly, Fig. 7 shows the nearly same thing as
described for Fig. 6 i.e. concentration at origin
is the highest and decreases rapidly along the dis-
tance and slowly along the time. But concentra-
tion at origin for Fig. 7 is higher than that of Fig.
6. This clears that Forward Time Central Space
Scheme (FTCSS) is somehow good scheme to solve
these modeled equations but not perfect.

Figure 7: Analytical: A and numerical: B solution
of equation (4). The both solutions do not provide
exactly same values but provide nearly comparable
values

3.6 Error Analysis

The solutions obtained analytically and numerically
can be compared with relative error which is defined
by [5],

Relative error =

∣∣∣∣∣Panalytical − Pnumerical

Panalytical

∣∣∣∣∣ (28)

The relative errors of pollution concentrations for
both the cases by h=1 and k=0.03 at t=3 hours are
tabulated below. The domain for distance is taken
up to 20 km from the origin to analyze the rela-
tive error between analytical and numerical solu-
tion of Advection-Dispersion Equation (ADE). Ta-
ble 1 shows the relative error for P1 and Table 2
shows that for P2. From both the tables, Table 1
and Table 2, we can see that concentrations goes on
decreasing with increase in distance. The relative
error is less near the origin and more at far from
the origin within the domain. The error for both
pollution concentrations P1 and P2 is shown with
the help of histogram below in Fig. 8, where red
colored pillar shows the analytical solution whereas
green colored pillar shows the numerical solution.
As the analytical and numerical solutions for P1

and P2 are compared, the relative error is higher
in computing P2 rather than P1, which can be seen
clearly from the tables given below.

Table 1: Relative Error of pollution concentration P1 [Kg m−3] at t = 3 hours.

Distance (km) Analytical solution Numerical solution Error Error %
0 2.301356 2.283520 0.007750 0.770
5 0.945251 0.930611 0.015400 1.548
10 0.409821 0.399460 0.025281 2.530
15 0.193824 0.183838 0.05152 5.152
20 0.104777 0.098491 0.05999 5.999
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Table 2: Relative Error of pollution concentration P2 [Kg m−3] at t = 3 hours.

Distance (km) Analytical solution Numerical solution Error Error %
0 2.405330 2.427610 0.009260 0.926
5 1.089690 1.121450 0.029140 2.914
10 0.507550 0.477210 0.059770 5.977
15 0.182539 0.169762 0.069990 6.990
20 0.085641 0.092935 0.085160 8.516

Figure 8: Comparison of analytical and numeri-
cal solutions for water pollution concentration with
uniform (Left) and exponential (Right) increment
of pollutants at origin. In both the cases analytical
as well as numerical solutions are obtained close to
each other.

4 Conclusion

In this study, one dimensional Advection-
Dispersion Equation (ADE) is applied to study the
dynamics of water pollution concentration at dif-
ferent spatial region along the length of river as the
pollutants in the source increasing uniformly and
exponentially. The analytical solutions of the em-
ployed model are presented by employing Laplace
transform and steady state state case is studied.
It has been found that concentration becomes a
fixed positive constant when time and space both

tends to infinity. Dispersion coefficient of pollution
concentration is taken to be non zero. The results
show that the pollution concentration at the source
is relatively larger in the case of exponentially incre-
ment than that for uniformly increment. However,
as the water flows substantially, these concentra-
tions vary with small margin due to their advection
and dispersion through the medium of water. The
variations of concentrations P1 and P2 are pre-
sented along the length of the river with respect
to the variation in rate of added pollutants, cross-
sectional area of the river, water flow velocity. The
results reveals that as the water flows downstream,
the concentration decreases. However, their rate
of decrement varies. As the rate of added pollu-
tants increases, the concentration decreases slowly.
Similarly, as velocity of the water increases, the
water pollution advects rather than the dispersion
that slows the decrease in concentration variation.
When the area of cross section of the river channel
increases, there will high discharge of water through
the channel. Consequently, pollution concentration
quickly decreases.

The three dimensional plots reveal that pollution
concentration is the highest at origin (source) at the
initial time and it decreases over time and space.
However, it quickly decreases with traveled distance
rather than traveled time due to the increment of
pollutants either uniformly or exponentially. The
numerical solutions of the model equations are ob-
tained by Finite Difference Method (FDM) using
Forward Time Central Space Scheme (FTCSS). As
the analytical and numerical solutions for P1 and
P2 are compared, the relative error is higher in com-
puting P2 rather than P1. These results may be
useful in better understanding the water pollution
that may contribute to environmental engineer-
ing, hydrology, contaminant transport modeling
and chemical engineering where the advection and
dispersion of contaminants is widely applied.
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