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Abstract

Normal blood flow is disrupted by aortic stenosis, which raises risks and affects the cardio-
vascular system. This work analyzes blood viscosity from the central core line to the arterial
wall in order to look at flow parameters in arteries with minor stenosis. In order to ac-
count for effective viscosity at radial distances, fluid dynamics in axisymmetric directions
are analyzed using the Navier-Stokes equation. Additionally, analytical expressions for shear
stress, pressure drop, velocity profile, and volumetric flow rate are investigated. These results
contribute to our growing knowledge of vascular physiology in stenosis and emphasize the
intricacy of blood flow dynamics.
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1 Introduction

Atherosclerotic plaque is formed by the accumu-
lation of cholesterol, fat, and other foreign parti-
cles [1]. Arteriosclerosis, specifically the abnormal
thickening and hardening of the artery walls, signifi-
cantly impacts the cardiovascular system. This con-
dition can result from various poor lifestyle choices,
such as smoking, physical inactivity, and an un-
healthy diet. The progression of arteriosclerosis

leads to notable changes in hemodynamic param-
eters, including flow resistance, wall shear stress,
pressure distribution, and blood flow [2, 3]. Steno-
sis in an artery often results from the accumula-
tion of cholesterol-rich particles, leading to the for-
mation of atherosclerotic plaques. These plaques
build up on the interior walls of arteries, causing
several detrimental effects [4]. Heart diseases and
stroke are significant global health issues, contribut-
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ing to high mortality rates [5]. When analyzing
medical imaging results like angiograms or ultra-
sound scans, different types of stenosis shapes can
indeed have specific hemodynamic implications, af-
fecting the severity and consequences of blood flow
obstruction [6]. Theoretical and experimental in-
vestigations into the effects of restrictions on blood
flow parameters are crucial for understanding the
hemodynamics of blood flow in both physiological
and pathological conditions [7–9].

Hematocrit is a significant factor that influences
blood viscosity. Additional features that can raise
blood viscosity include decreased red blood cell de-
formability, high red blood cell aggregation, and
increased plasma viscosity [10–12]. Blood velocity
and hematocrit percentage are two significant fac-
tors that have been shown to influence wall shear
stress in the blood flow through a tapered artery
[13]. A complete blood count (CBC) is a com-
prehensive examination that identifies and tracks
various medical disorders by analyzing hematocrit
concentration, white blood cell count, and platelet
count [2,14]. Examined the effects of pressure gradi-
ents, wall shear stress, blood velocity, and volumet-
ric flow rate on human carotid arteries. An increase
in the hematocrit and viscosity is accompanied by
a decrease in the artery wall shear stress, indicat-
ing an increase in heart rate [15]. These results
highlight the way that hematocrit, catheter size,
and stenosis interact to influence blood flow hemo-
dynamics. It has been found that the impedance
changes with the size of the stenosis, hematocrit,
and catheter [12]. Blood clotting in the human
heart can be fatal, as evidenced by the correla-
tion between hematocrit and blood pressure gradi-
ent [14]. If platelets are activated by exceptionally
high shear stress near the top of the stenosis, such
atherosclerosis damages the cardiovascular system
by entirely blocking blood flow to the heart [16].

Figure 1: Schematic illustration of a stenotic artery.

Mandal and Chakravarty [17] have shown that

blood behaves like a non-Newtonian fluid in arteries
with small radii and at low shear rates. According
to Chaturani and Ponalagusamy [18] blood exhibits
complex rheological behavior, particularly at low
shear rates, where it demonstrates a non-zero yield
stress. This phenomenon is primarily due to the
interactions between erythrocytes (red blood cells),
which can aggregate to form structures known as
rouleaux. Singh et al. [16] assumed a little asym-
metric stenosis along the radial direction. Biswas
and Chakraborty [13] examined the pulsatile blood
flow across a moderately stenotic tapering artery
with slip velocity at the arterial wall. Haldar et
al. [19] have investigated the effects of blood viscos-
ity, wall shear stress, velocity, and hematocrit per-
centage on blood flow in the stenosed artery. Bali
and Awasthi [20] determined how blood viscosity
varies with hematocrit and distance from the cen-
ter, and how the external magnetic field affects the
flow. Onitilo and Usman [14] examined the theory
that arterial wall shear stress would be decreased
by raising hematocrit and viscosity.

The literature review that was previously discussed
offers proof of the impact that stenosis has on blood
flow. In this study, blood flow characteristics with
mild stenosis were examined in relation to blood vis-
cosity in plasma, hematocrit, and the site of steno-
sis. The cylindrical polar form of the Navier-Stokes
equation has been applied in axisymmetric direc-
tions.

2 Methods

Considering the constant blood flow in an axially
symmetrical artery that has stenosis. Let R0 and
R represent the artery’s radius in the absence and
presence of stenosis, respectively. The artery is
viewed as a circular, inelastic tube. With steno-
sis, the radial blood flow is disregarded. Blood is
thought to flow exclusively in an axial direction.

2.1 Model Equation

Considering the three components of velocity and
pressure at (x, y, z) and at time t are u(x, y, z, t),
v(x, y, z, t), w(x, y, z, t) and p(x, y, z, t) respectively.
The continuity equation in a steady-state form is
[4, 21]

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (1)

Here, a fluid’s density is represented by ρ(x, y, z, t).
An incompressible viscous fluid has a constant den-
sity, ρ. The Newtonian, viscous, and incompressible
fluid N-S equations are [4, 21]
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In this case, t represents the time, and the external body forces, namely gravity, are f = ρ(gx, gy, gz).
The forces resulting from pressure differences are denoted by the terms ∂p/∂x, ∂p/∂y, ∂p/∂z, and the
viscous forces with constant viscosity coefficient µ in the x, y, and z- direction are represented by the
last term on the right. The system (1)-(4) is closed for four unknown functions u, v, w and p. If
gx = 0, gy = 0, and gz = 0 are the only external body forces acting on the motion, and if the motion is
steady—that is, not changing over time—then ∂u/∂t = 0, ∂v/∂t = 0, ∂w/∂t = 0, and ∂p/∂t = 0, and
the motion is two-dimensional.

The Navier-Stokes equations for fluid flow inside a cylinder can be used to predict the flow of blood
through arteries. We will use r and p to represent the artery’s blood flow’s radius and pressure drop.
The velocities’ components along the radial, angular, and axial directions are vr, vθ, and vz, individually.
The system (1)-(4) can be expressed in cylindrical form using x = r cos θ, y = r sin θ, r2 = x2 + y2

and θ = tan−1(y/x) from Cartesian coordinate (x, y, z) to polar coordinate (r, θ, z). The equation of
continuity and the equation of motion are [3, 21]
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We assume vθ = 0 in the axisymmetric flow, and p, vr, and vz are independent of θ. For a steady flow
of blood, viscosity µ and density ρ are considered to be constant. v is the velocity component parallel to
the z-axis. Only axially symmetric flow along the z-axis has been examined, therefore if vr = 0, vθ = 0,
and vz = v, then equations (6) - (7) become

∂v

∂z
= 0, 0 = −∂p

∂r
, 0 = −∂p

∂z
+ µ

(
∂2v

∂r2
+

∂2v

∂z2
+

1

r

∂v

∂r

)
(8)

Suppose pressure term as P (z) = −∂p/∂z, equation (8) reduces to

−P (z)
r

µ
=

∂

∂r

(
r
∂v

∂r

)
. (9)

At a radial distance r, the effective viscosity of blood is expressed as [2, 22].

µr = µp [1 + αHr] (10)

where µp is a plasma viscosity, α is a constant that characterizes the dependence of viscosity on hema-
tocrit, Hr is the hematocrit at radial distance r, and αHr reflects the increased viscosity due to the
presence of red blood cells. The formula describes this relationship.

Hr = H
[
1−

(
r

R0

)m]
(11)

here, m is the number of stenosis, m = 1 is used

from (10) and (11)

µr = µp

[
1 + αH− αH

(
r

R0

)]
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put b2 = αH, b1 = 1 + b2

µr = µp

[
b1 − b2

(
r

R0

)]
(12)

2.2 Geometry of Stenosis

Figure 1 describes the form of the stenosis that results from the layer being deposited inside a cylindrical
artery.

R = R0

(
1− β

2R0

(
1 + cos

πz

z0

))
(13)

where β is the greatest thickness and R and R0 are the radii with and without stenosis [21].

The boundary condition as stated by [3, 21]

v =

{
0 at r = R,

0 at r = R0,

and
∂v

∂r
= 0 at r = 0

2.3 Velocity Profile

From equations (9) and (12)
Pr
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Binomial expansion is used, and neglect the higher power of r,
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Apply boundary conditions after integration,
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Again integration,
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used boundary condition, v = 0, at r = R
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then equation (14) becomes,
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. (15)
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Pressure drop on the stenosed region is

∆P =

∫ z0

−z0

Pdz

from the equation (19) and then integration, we have
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if there is no stenosis i.e., β = 0 then equation (20) becomes
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)
. (21)

Ratio of pressure drop is

∆P
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2.6 Ratio of Shear Stress

Kapur and Pokharel et al. [4, 21] have mentioned the formula

τ =
PR

2
.

From the equation 14,
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(
1− 8b2R

15b1R0

)
with the help of equation (13), Binomial expansion is used, and neglect the higher power of δ, we get
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if there is no stenosis i.e., β = 0, then equation (23) becomes,
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the ratio of shear stress
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3 Results and Discussion

Computational approaches provide a detailed anal-
ysis of blood flow characteristics in stenosed arter-
ies and offer valuable insights into the physiological
impacts and potential treatment choices.

3.1 Velocity of blood flow through a
stenotic artery

Figure 2(A), explains the relationship between ve-
locity and radius for both effective and plasma vis-
cosity. The effective viscosity is 33.05 mm s−1 at
the beginning, when r = 0, and the plasma viscosity
is 47.67 mm s−1. For effective and plasma viscos-
ity receptively, the velocities are 29.82 mm s−1 and
43.40 mm s−1 for r = 1 mm. In a similar vein,
an artery’s radius is 2 mm, and its effective and
plasma viscosity velocities are 19.23 mm s−1 and
27.12 mm s−1, respectively. Additionally, it has
been noted that velocities stop at an artery’s inner
wall. According to the above, velocity reaches its
maximum in the center and progressively declines
towards the wall for every value of plasma viscos-
ity and effective viscosity. This simulation’s output

demonstrates how effective viscosity has a signifi-
cant impact on velocity, as seen in the figure. This
investigation concludes that the effective viscosity
has a greater impact on blood flow velocity than
plasma viscosity.

Figure 2(B), shows how the hematocrit affects the
velocity profile under the assumption that the pres-
sure drop is constant. We’ve assumed an artery’s
radius of 3 mm and pressure of 80 Pa. The veloc-
ity drops from 34.96 mm s−1 to 19.73 mm s−1, or
roughly 15.23 mm s−1 at r = 0, when the hemat-
ocrit rises from 0.2 to 0.8. The velocity falls from
31.34 mm s−1 to 17.84 mm s−1, or roughly 13.5 mm
s−1 at r = 1 mm, when the hematocrit rises from
0.2 to 0.8. In a similar manner, the velocity drops
from 20.01 mm s−1 to 11.51 mm s−1, or roughly
8.42 mm s−1 at r = 2 mm, when the hematocrit
rises from 0.2 to 0.8. Finally, as the picture illus-
trates, the hematocrit increases somewhat, followed
by a quick initial reduction in velocity and a sub-
sequent steady decrease. Near the inner wall of the
artery, the velocity is almost zero, and it gradually
increases as we move into the center. A low hema-
tocrit causes a quicker rate of velocity rise.

Figure 2: Velocity variations with radial distance for A: comparison viscosity, B: various hematocrit, C:
various viscosity, D: increased viscosity due to the presence of red blood cells.
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Figure 2(C), shows how viscosity affects the ve-
locity profile under the assumption that the pres-
sure drop is constant. We’ve assumed that an
artery’s radius is 3 mm. The velocity drops from
32.89 mm s−1 to 14.1 mm s−1, or roughly 24.79
mm s−1 at r = 0, when the viscosity increases
from 0.3 to 0.7. The velocity drops from 29.73 mm
s−1 to 12.74 mm s−1, or roughly 16.99 mm s−1 at
r = 1 mm, as viscosity increases from 0.3 to 0.7.
In a similar vein, the velocity drops from 19.31 mm
s−1 to 8.278 mm s−1, or around 11.032 mm s−1 at
r = 2 mm, when viscosity increases from 0.3 to 0.7.
At last, as the image illustrates, viscosity increases
slightly before velocity first drops quickly and then
gradually. As we move toward the center, the veloc-
ity gradually increases from zero on the inner wall.
A low viscosity causes the velocity to increase more
quickly.

Figure 2(D), describes the distribution of velocity
for different values of increased viscosity due to
the presence of red blood cells. Here βH = b2
takes vlues (0.5, 1, 1.5, 2) and 1 + βH = b1 has val-
ues (1.5, 2, 2.5, 3). The velocity v at b1 = 1.5 and
b2 = 0.5 is 10.57 mm/s. As the b1 and b2 increases

the velocity decreases and becomes 8.637 mm/s at
b1 = 2 and b2 = 1. The velocity at b1 = 2.5 and
b2 = 1.5 is 7.863 mm/s for the constant viscosity
of plasma 0.5 gram/mm s. The velocity at b1 = 3
and b2 = 2 is (7.186 mm/s for the constant viscos-
ity of plasma (0.5 gram/mm s respectively. It is
found that the blood velocity gradually diminishes
with increasing increased viscosity due to the pres-
ence of red blood cells i.e the flow velocity becomes
smaller and smaller as one proceeds away from the
center. For equal amount of increases increased vis-
cosity due to the presence of red blood cells of an
artery, the velocity in center has maximum and in
the inner wall of an artery has minimum.

As we can see from the above figures, effective vis-
cosity has a significant impact on lowering velocity,
so include the effective term and increased viscosity
due to the presence of red blood cells will yield bet-
ter results than only considering plasma viscosity.

3.2 Volumetric flow rate in a stenotic
artery

Figure 3: Volumetric flow rate A: at different position of stenosis, B,C: at different height of stenosis, D:
increased viscosity due to the presence of red blood cells.
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Figure 3(A) explains the volumetric flow rate at
various stenosis sites, and several lines are drawn
to illustrate the hematocrit values rising. Stenosis
positions vary from 0 to 0.5 mm. The volumetric
flow rate rises to 494.3 mm3 s−1 from 481 mm3 s−1,
it is about 13.3 mm3 s−1 with hematocrit is 0.2, for
the position of stenosis from 0 to 0.5. Once more,
there is an increase in the volumetric flow rate from
357.8 mm3 s−1 to 343.7 mm.3 s−1, the difference is
aroud 14.1 mm3 s−1 at 0.5 for the position of steno-
sis changes from 0 to 0.5. The volumetric flow rate
in the final scenario increases from 266.3 mm3 s−1

to 279 mm3 s−1 at 0.7, meaning that the difference
in this case is 12.7 mm3 s−1. We see that there
is an inverse relationship between the hematocrit
and the volumetric flow rate. Stenosis position and
hematocrit together carry a significant danger.

Figure 3(B) is employed to illustrate how, for
changing hematocrit, the relationship between vol-
umetric flow rate and height of stenosis varies. Dif-
ferent lines are created for each hematocrit in order
to display the influence of hematocrit individually.
The highest hematocrit value is 0.7, and the maxi-
mum height of stenosis is 0.5 mm. About the time
the hematocrit is 0.2 and the stenosis grows from 0
to 0.5 mm, the volumetric flow rate drops from 507
mm3 s−1 to 216.8 mm3 s−1. In a similar manner,
when the hematocrit value is 0.5, the volumetric
flow rate drops from 372 mm3 s−1 to 148.7 mm3

s−1. For the hematocrit value of 0.8, the volumetric
flow rate drops from 291.8 to 113 mm3 s−1. While
analyzing the variations in the volumetric flow rate
decrease, we observe that the variation diminishes
as the hematocrit increases. The volumetric flow
rate lines are nearly parabolic when the hematocrit
values are 0.2, 0.5, and 0.8. This suggests that the
stenosis-related change is greatest when hematocrit
values are compared. Hematocrit has a greater ef-
fect when the stenosis height is less than 0.2 mm.
When the stenosis height is greater than 0.4 mm, all
of the volumetric flow rate lines fall between 216.8
mm3 s−1 and 113 mm3 s−1 for all hematocrit val-
ues, indicating a limiting circumstance. This sug-
gests that greater area is required to flow a greater
amount, and that in such situation, hematocrit is
more effective.

Figure 3(C), explains the relationship, given a range
of plasma viscosity values, between volumetric flow
rate and thickness of stenosis (δ). To show the
impact of varying plasma viscosity, three lines are
drawn. In this instance, the constants are hemat-
ocrit 0.5, pressure 80 Pa, and radius 3 mm. The
volumetric flow rate drops from 524.20 mm3 s−1 to
204.7mm3 s−1, when the height of stenosis changes
from 0 to 0.5 mm for the viscosity 0.3 gram mm−1

s−1. The volumetric flow rate decreases from 314.5
mm3 s−1 to 122.8 mm3 s−1 for the viscosity value

of 0.5 gram mm−1 s−1, and from 224.6 mm3 s−1 to
87.75 mm3 s−1 approximately for the viscosity value
of 0.7 gram mm−1 s−1. In this sense, when viscos-
ity increases, the volumetric flow rate drops. This
figure also shows that, when other parameters re-
main constant and the plasma’s viscosity grows uni-
formly, the volumetric flow rate eventually drops.

Figure 3(D) describes the distribution of volumetric
flow rate for increased viscosity due to the presence
of red blood cells. Here b2 = βH and b1 = 1 + βH
takes values (0.5, 1, 1.5, 2) and (1.5, 2, 2.5, 3). The
volumetric flow rate at b1 = 1.5 and b2 = 0.5 is
473 mm3/s. As the increased viscosity due to the
presence of red blood cells increases the volumetric
flow rate decreases for the constant viscosity and
becomes 347.8 mm3 s−1 at b1 = 2 and b2 = 1.
The volumetric flow rate at b1 = 2.5 and b2 = 1.5
is 281.7 mm3/s for the constant viscosity of plasma
0.5 gram/mm s and becomes 249.3 mm3/s at b1 = 3
and b2 = 2 for the same viscosity.It is found that
the volumetric flow rate gradually diminishes with
increasing increased viscosity due to the presence of
red blood cells i.e the volumetric flow rate becomes
smaller as one proceeds away from the center. For
equal amount of increases in increased viscosity due
to the presence of red blood cells, the volumetric
flow rate at b1 = 1.5, b2 = 0.5 has maximum and
at b1 = 3, b2 = 2 has minimum.

3.3 Pressure gradient across the
stenosis artery

Figure 4 describes how the ratio of pressure drop
to δ varies for varying hematocrit values. Since the
gap used to draw these lines is so narrow, the lines
appear to be practically linear curves. The pres-
sure drop value ratio is calculated when δ is in the
range of 0 and 0.5. The picture illustrates that with
a hematocrit of 0.8, the pressure ratio reaches its
maximum of approximately 1.323 at δ = 0.5 mm.
For the hematocrit value of 0.5, the approximate
ratio of pressure drop is 1.296. In the same way,
1.253 for 0.3. When the hematocrit rises within the
specified range, the ratio of pressure drop increases
steadily. This suggests that as the hematocrit and
height of stenosis increase, the ratio of pressure drop
increases progressively. The hematocrit measure-
ment may benefit from this knowledge.
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Figure 4: Relation between ratio of Pressure drop
for different values of hematocrit with different
height of stenosis.

3.4 Shear Stress ratio acroos stenotic
artery

Figure 5(A) explains the relationship between the
shear stress ratio at various stenosis points, and sev-
eral curves are produced to illustrate the increasing
hematocrit levels. In this case, the stenosis length
ranges from −0.5 to 0.5, and its maximal height
is found at z = 0. Due to the stenosis’s symmet-
ric structure, all of the lines symmetrically increase
from −0.5 to 0 and decrease after 0. It demon-
strates that when stenosis position increases, the
ratio of shear stress falls. The ratio of shear stress

increases parabolically from the common point to
z = 0, where it reaches its maximum values 2,
2.096, and 2.144 for the hematocrits of 0.2, 0.5, and
0.8, respectively. When the hematocrit increases
shear stress ratio increases gradually. The conclu-
sion from this figure is that the shear stress ratio
gets increasingly parabolic and inclines gradually
as the hematocrit increases.

Figure 5(B) shows the shear stress ratio at vari-
ous stenosis heights, with distinct lines being drawn
to indicate rising hematocrit values. The highest
hematocrit value is 0.8, and the maximum height
of stenosis is 0.5 mm. For this reason, every line in-
creases from 0 to 0.5 because the stenosis is thought
to have a symmetrical shape. This demonstrates
that a uniform rise in the hematocrit also results
in a uniform increase in the ratio of shear stress.
Shear stress increases and reaches 1.734 at δ = 0.5
mm when the hematocrit is 0.2. At 0.5, the shear
stress increases and reaches 1.956 at the maximum
height δ = 0.5 mm. At 0.8, the shear stress ratio
increases and reaches 2.098, as depicted in the fig-
ure. This analysis concludes that as hematocrit in-
creases, the shear stress ratio increases consistently
with a uniform quantity. The ratio of shear stress
falls as hematocrit decreases, and the curve takes on
a parabolic shape at different positions of stenosis.
On the other hand, linear curves for various stenosis
heights are produced when there is a consistent rise
in hematocrit levels along with a uniform increase
in the shear stress ratio.

Figure 5: Relation between ratio of the shear stress A: with various position of stenosis for different
values of hematocrit, B: at different height of stenosis for different values of viscosity of plasma.

4 Conclusion

Atherosclerotic plaque accumulation and abnormal
tissue development lead to stenosis, which restricts
blood flow and contributes to cardiovascular dis-

eases like ischemia and stroke. The Einstein co-
efficient of blood viscosity, which quantifies the
resistance to flow in blood vessels, is crucial for
understanding hemodynamics and vascular health.
Navier-Stokes equations have been applied to ana-
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lyze the Einstein viscosity in an axisymmetric di-
rection, calculating model expressions for veloc-
ity profile, volumetric flow rate, pressure, pressure
drop, and shear stress in an artery. The velocity
of blood is more influenced by Einstein’s viscos-
ity than plasma viscosity. A significant reduction
in volumetric flow rate is observed at the maxi-
mum height of stenosis with the uniform increase in
hematocrit, indicating a heightened risk of stenosis
effects after incorporating effective viscosity. The
ratio of pressure drop and shear stress increases
linearly with the uniform increase in hematocrit,
showing a linear relationship with stenosis height.
Blood flow biomechanical modeling holds transfor-
mative potential for clinical procedures, surgical
outcomes, vascular health understanding, and inno-
vation across bioengineering and medical research,
promising enhanced patient outcomes and health-
care advancement.
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