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Abstract 

Acoustoelectric effect in semiconductor superlattice (SL) in the region ql >>1 has been studied. 
The equation of motion of the lattice has been transformed into a simple form which becomes 
identical with the dynamic equation for the wave amplitude in the theory of plasma turbulence. A 
dispersion relation has been derived from the acoustoelectric current J on the constant electric 
field E. It is noted that when the electric field is negative the current  J rises, reaches a peak and 
falls off. On the other hand, when the electric field is positive the current decreases, reaches a 
peak and then rises. A similar observation has been noted for an acoustoelectric interaction in a 
multilayered structure resulting from the analysis of the Si/SiO2 structure. 

 
Keywords: acoustoelectric current; acoustomagnetothermal effect; quantum transparency 

 

 

 

1. Introduction 
 
The Propagation  of acoustic wave through a semiconductor has been discussed from many 
angles. Blotekjaer and Quate [1] have used the coupled mode approach in which one regards the 
acoustic wave as the lattice mode which are coupled Piezo – electrically to the space charge 
modes of the electron distribution. In [2] Thakur et al. observed the effect of a dc current on the 
drift of optically generated carriers in a quantum well. Another interesting mechanism based on 
the transfer of energy and momentum is the interaction of acoustic phonons with carrier charges 
in semiconductor materials. This mechanism occurs not only during the scattering of quasi-
momentum carriers with lattice vibrations but also when acoustic waves propagate through the 
material. Among the effects observed are the absorption ( amplification ) of acoustic waves  [3-5], 
acoustoelectric effect (AE) [6-10], acoustomagnetoelectric effect (AME) [11-12], acoustothermal 
effect [13], and acoustomagnetothermal effect [13]. 
 
These phenomena have, however, received very little attention in (SL) even though they have 
immense device applications. Acoustoelectric effect is the transfer of momentum from acoustic 
waves to the conduction electrons as a result of which may give rise to a current usually called 
the acoustoelectric current J or in the case of an open circuit, a constant electric field E. The 
study of this effect is vital because of the complimentary role it may play in the understanding of 
the properties of the SL which we believe should find an important place in the acoustoelectric 
devices. Experimental evidence of the dependence of the acoustoelectric effect on the  
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parameters of SL has been reported in [14]. In [15] experimental work on the acoustoelectric 
interaction of SAW in GaAs- In GaAs superlattice has been reported. A theoretical model for 
measuring transverse acoustoelectric voltage in multilayered structure resulting from the analysis 
of the Si/SiO2 has also been reported in [16]. 
 
2. Distribution Function and Threshold Field   
 
Assume the sound wave as collimated monochromatic Phonons with all exactly in phase with one 
another, we write distribution function, as. 

f(k) = δ(k - q)      (1) 
where ‘k’ is the current phonon wave vector, in many semiconductors, such as GaAs the 
conduction band has a minimum  at zone centre and an indirect gap with higher energy at 
another minimum, at a critical point on the zone boundary. The SL has above other minimum on 
zone boundary. If the GaAs quantum well width is small enough, the confined state of the zone 
centre can be pushed higher than the other zone boundary. In this case, electrons will fall from 
the zone centre into other minimum. The valence band holes will remain confined in this layers, 
however. This is called a Type -II SL. A structure in which both the electrons and the holes are in 
the same layer is called a Type –I  SL. SL have been used to demonstrate the basic effect of 
Bloch oscillations [17] in which a D C electric field generates. 
 
It is assumed that the sound wave and the applied constant electric field E propagates along the 
Z – axis of the SL. The problem will be solved in the quasi – classical case, i.e. 2∆ >>τ 

-1
(ћ = 1), 

eED << 2∆ ( D is the period of the SL, 2∆ is the width of the lowest energy miniband and e is the 
electron charge ). The current density associated with an acoustic wave may be obtained from 
the expression [18]. 

J =          (2) 

where, 

 U =  

          (3) 

‘ ’is the sound flux density, ωq and  are the frequency and the group velocity of sound wave 

with the vector  and  is  the solution of the Boltzmann kinetic equation in the absence of 

a magnetic field. If we introduce a new term   = p-q in the second term of the integrals in Eq. (3) 

and take  = .  

 
We can express Eq. (3) in the form 
 
J =           (4) 

 

where the vector  as indicated in [19] is the mean free path  li(p). 

Thus the acoustoelectric current in Eq. (4) in the direction of SL axis becomes 
 

 Jz=        (5) 

 

where f( ) is the distribution function, p is the momentum of electrons, G(P2, ) is the matrix 

element of the electron-phonon interaction and for qD<<1 it is given as, 
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                 (6) 

where C is the deformation potential constant.  is the density of the SL in the τ approximation 

and further when τ is taken to be constant, 
lz = τ sz                             (7) 

sz =                                                (8) 

Inserting Eqs. (6) and (7) into Eq. (5) we obtain 
 

Jz =  (9) 

 
For superlattices the dispersion law is given by  
 

                     (10) 

 
where Pt and Pl are the transverse and longitudinal ( relative to the SL axis ) components of the 
quasi momentum respectively, ∆υ is the half width of the υth allowed miniband 
 

                                                   (11) 

are the size- quantized levels in an isolated conduction film, D = d0+d1 ( d0 is the width of the 
rectangular potential wells and d1 is the barrier width a non-zero quantum transparency) is the SL 
period. 
 
The distribution function in the presence of the applied constant field E is obtained by solving the 
Boltzmann equation in the τ approximation, given by 
 

   f(P) =         (12) 

Here,                          (13) 

 
where n is the electron density, T is the temperature in energy units and Io(x) is the modified 
Bessel function. 
 
We assume that electrons are confined to the lowest  conduction miniband (υ=1) and omit the 
miniband indices. This is to say that the field does not induce transitions between the filled and 
empty minibands. The electron velocity is given by 
 

                                      (14) 

We further assume that   and write Eq. (10) in the usual form as  

 

                                   

    (15) 
Substituting Eqs. (12),(14) and (15) into Eq. (4) and solving for a non-degenerate electron gas.  
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Jz=                           (16) 

 

where  is the Heaviside step function. 

 

b =    

 

X = Sinh , and 

 

= 
 

 
We shall solve Eq. (16) for two particular case,  
(i) in the absence of the applied constant field (E=0), from Eq. (16) we obtain  

 

Jz =        (17) 

 

If , Jz =0  i.e; there appears a transparency window. This is a consequence 

of the conservation law. 

(ii) In a weak constant electric field, eEd , , from Eq. (16) we obtain  

 Jz=   (18) 

From Eq. (18) it is observed that at  
 

E > E0 = ωq 

  
 

the acoustoelectric current changes sign. The value E0 can be interpreted as a threshold 

field. E0 is a function of the SL parameters D and , and temperature T, frequency  and 

the wave number q. For example, at , , D= cm, ,  

 and . For these values we obtain the threshold field  

E0 = 8.65vcm
-1

 which is small and can be observed. 
 
3. Results and Discussion 
 
The general solution of Eq. (16) cannot be obtained analytically. We, therefore, obtained it 
numerically and the graph of Jz on E have been plotted. It is noted that the acoustoelectric current 

has a peak at some values E. These peaks decrease with a corresponding decrease of . More 

interesting is the nature of the acoustoelectric current. It is observed that when the electric field is 
negative the current rises and reaches a maximum and then falls of in a manner similar to that  
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observed during a negative differential conductivity. On the other hand, when the electric field is 
positive the current decreases and reaches a minimum then increases. This can be attributed to 
the Bragg reflection at the band edge. It is further observed that the ratio of the height of the peak 
corresponding to absorption to that corresponding to amplification differ from one. This value also 

decreases with a decrease in  . The threshold field E0 also increases with the decrease of . It 

is noteworthy to show that a similar relation was obtained for a transverse acoustoelectric voltage 
experiment on Si/SiO2 and this result agrees quite well with our result [15] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig :  Dependence of Jz/Jo on  
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