BIBECHANA

A Multidisciplinary Journal of Science, Technology and Mathematics ISSN 2091-0762 (print), 2382-5340 (online)

Journal homepage: http://nepjol.info/index.php/BIBECHANA

On contact conformal curvature tensor in trans-Sasakian manifolds

Riddhi Jung Shah

Department of Mathematics, Janata Campus Nepal Sanskrit University, Dang E-mail: shahrjgeo@gmail.com

Accepted for publication: December 18, 2014

Abstract

The purpose of this paper is to study some results on contact conformal curvature tensor in trans-Sasakian manifolds. Contact conformally flat trans-Sasakian manifold, ξ -contact conformally flat trans-Sasakian manifold and curvature conditions $C_0(\xi, X).S = 0$ and $C_0(\xi, X).C_0 = 0$ are studied with some interesting results. Finally, we study an example of 3-dimensional trans-Sasakian manifold.

DOI: http://dx.doi.org/10.3126/bibechana.v12i0.11783 © 2014 RCOST: All rights reserved.

Keywords: Contact conformal curvature tensor; Trans-Sasakian manifold; Hermitian manifolds.

1. Introduction

In 1978, Gray and Hervella [1] studied on the sixteen classes of almost Hermitian manifolds and their linear invariants. They considered unitary group U(n) on a certain space W and studied that the representation of U(n) on W has four irreducible components, $W = W_1 \oplus W_2 \oplus W_3 \oplus W_4$. From these four components sixteen different invariants subspaces were obtained. Among four components $W_3 \oplus W_4$ corresponds to the class of Hermitian manifolds. Oubina [2] studied a new class of almost contact metric structure, called trans-Sasakian which is an analogue of a locally conformal Kaehler structure on an almost Hermitian manifold. An almost contact metric structure (φ, ξ, η, g) (where φ is a (1, 1) tensor field, ξ is a vector field, η is a 1-form and g is a compatible Rimannian metric) on M is trans-Sasakian [2] if $(M \times \mathbb{R}, J, G)$ belongs to the class W_4 , where J is the almost complex structure on $M \times \mathbb{R}$ defined by

(1.1)
$$J\left(X, f\frac{d}{dt}\right) = \left(\varphi X - f\xi, \eta\left(X\right)\frac{d}{dt}\right),$$

for any vector field X on M, where G is the product metric on $M \times \mathbb{R}$. Trans-Sasakian manifold is the trans-Sasakian structure of type (α, β) , where α and β are smooth functions on M. Trans-Sasakian manifolds of type $(0,0),(\alpha,0)$ and $(0,\beta)$ are cosympletic [3], α -Sasakian [4] and β -Kenmotsu manifold [4,5] respectively. Trans-Sasakian manifolds have been studied in [6,7] and by many others.

On the other hand, contact conformal curvature tensor field was introduced and defined by Jeong et al. [8] in a (2n+1)-dimensional Sasakian manifold which was constructed from the conformal curvature tensor field defined by Kitahara et al. [9] in a Kaehler manifold by using the Boothby-Wang's fibration. Contact conformal curvature tensor has also been studied in [10] and [11].

2. Preliminaries

Let M be a (2n+1)-dimensional almost contact metric manifold equipped with an almost contact metric structure (φ, ξ, η, g) , where φ is a (1, 1) tensor field, ξ is a vector field, η -is a 1-form and g is a compatible Riemannian metric such that [3]

(2.1)
$$\varphi^{2}(X) = -X + \eta(X)\xi, \ \eta(\xi) = 1, \ \varphi\xi = 0, \ \eta(\varphi X) = 0,$$

(2.2)
$$g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y),$$

(2.3)
$$g(\varphi X, Y) = -g(X, \varphi Y), g(X, \xi) = \eta(X),$$

for all $X, Y \in TM$. The fundamental 2-form Φ of the almost contact metric structure (φ, ξ, η, g) is defined as

(2.4)
$$\Phi(X,Y) = g(X,\varphi Y) = -g(\varphi X,Y),$$

since φ is a skew-symmetric with respect to g.

An almost contact metric manifold M is called trans-Sasakian manifold if [2]

$$(2.5) \quad (\nabla_X \varphi) Y = \alpha \{ g(X, Y) \xi - \eta(Y) X \} + \beta \{ g(\varphi X, Y) \xi - \eta(Y) \varphi X \},$$

where ∇ is Levi-Civita connection of Riemannian metric g and α, β are smooth functions on M. From (2.5) it follows that

(2.6)
$$\nabla_X \xi = -\alpha \varphi X + \beta \{X - \eta(X)\xi\},$$

(2.7)
$$(\nabla_X \eta) Y = -\alpha g(\varphi X, Y) + \beta g(\varphi X, \varphi Y).$$

In a (2n+1)-dimensional trans-Sasakian manifold M, the following relations hold [6]

(2.8)
$$R(X,Y)\xi = (\alpha^{2} - \beta^{2})[\eta(Y)X - \eta(X)Y] - (X\alpha)\varphi Y - (X\beta)\varphi^{2}(Y) + 2\alpha\beta[\eta(Y)\varphi X - \eta(X)\varphi Y] + (Y\alpha)\varphi X + (Y\beta)\varphi^{2}(X),$$

$$R(\xi,X)Y = (\alpha^{2} - \beta^{2})[g(X,Y)\xi - \eta(Y)X] + 2\alpha\beta[g(\varphi Y,X)\xi - \eta(Y)\varphi X] + (Y\alpha)\varphi X + g(\varphi Y,X)(grad\alpha) + (Y\beta)[X - \eta(X)\xi] - g(\varphi X,\varphi Y)(grad\beta),$$

$$(2.10) 2\alpha\beta + (\xi\alpha) = 0,$$

(2.11)
$$S(X,\xi) = [2n(\alpha^2 - \beta^2) - (\xi\beta)]\eta(X) - ((\varphi X)\alpha) - (2n-1)(X\beta),$$

(2.12)
$$\eta(R(X,Y)Z) = -g(R(X,Y)\xi,Z),$$

(2.13)
$$\eta(R(X,Y)\xi) = \eta(R(\xi,X)\xi) = \eta(R(X,\xi)\xi) = 0,$$

(2.14)
$$\eta(R(\xi,X)Y) = (\alpha^2 - \beta^2 - (\xi\beta))g(\varphi X, \varphi Y).$$

In a (2n+1)-dimensional trans-Sasakian manifold if we put $\varphi(\operatorname{grad}\alpha) = (2n-1)\operatorname{grad}\beta$, then we have

$$(2.15) \qquad (\xi\beta) = 0,$$

$$(2.16) S(X,\xi) = 2n(\alpha^2 - \beta^2)\eta(X),$$

(2.17)
$$\eta(R(\xi,X)Y) = (\alpha^2 - \beta^2)g(\varphi X, \varphi Y),$$

$$(2.18) R(\xi,X)\xi = (\alpha^2 - \beta^2)\{\eta(X)\xi - X\},$$

$$(2.19) R(X,\xi)\xi = -R(\xi,X)\xi.$$

Throughout the paper we consider the trans-Sasakian manifold under the condition $\varphi(\operatorname{grad}\alpha) = (2n-1)\operatorname{grad}\beta$.

In a (2n+1)-dimensional trans-Sasakian manifold the contact conformal curvature tensor field C_0 of type (1,3) which is defined by [8] can be written as

$$C_{0}(X,Y)Z = R(X,Y)Z + \frac{1}{2n} \{S(Y,Z)X - S(X,Z)Y + g(Y,Z)QX - g(X,Z)QY + S(X,Z)\eta(Y)\xi - S(Y,Z)\eta(X)\xi + \eta(X)\eta(Z)QY - \eta(Y)\eta(Z)QX + S(\varphi X,Z)\varphi Y - S(\varphi Y,Z)\varphi X + g(X,\varphi Z)Q(\varphi Y) - g(Y,\varphi Z)Q(\varphi X) + 2g(X,\varphi Y)Q(\varphi Z) + 2S(\varphi X,Y)\varphi Z\} + \frac{1}{2n(n+1)} \{2n^{2} - n - 2 + \frac{(n+2)r}{2n}\}\{g(Y,\varphi Z)\varphi X - g(X,\varphi Z)\varphi Y - 2g(X,\varphi Y)\varphi Z\} + \frac{1}{2n(n+1)} \{n + 2 - \frac{(3n+2)r}{2n}\}\{g(Y,Z)X - g(X,Z)Y\} - \frac{1}{2n(n+1)} \{4n^{2} + 5n + 2 - \frac{(3n+2)r}{2n}\}\{\eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y + g(Y,Z)\eta(X)\xi - g(X,Z)\eta(Y)\xi\},$$

where R, S, Q and r denote the curvature tensor, the Ricci tensor, the Ricci operator and the scalar curvature respectively.

From (2.20), we also have

(2.21)
$$C_0(X,Y)\xi = R(X,Y)\xi + (\alpha^2 - \beta^2 - 2)\{\eta(Y)X - \eta(X)Y\},$$

(2.22)
$$C_0(\xi, X)Y = R(\xi, X)Y + (\alpha^2 - \beta^2 - 2)\{g(X, Y)\xi - \eta(Y)X\},$$

$$\eta(C_0(X,Y)Z) = \eta(R(X,Y)Z)$$

$$+(\alpha^2 - \beta^2 - 2)\{g(Y,Z)\eta(X) - g(X,Z)\eta(Y)\},\$$

$$\eta(C_0(X,Y)\xi) = 0,$$

(2.25)
$$\eta(C_0(\xi, X)Y) = 2(\alpha^2 - \beta^2 - 1)\{g(X, Y) - \eta(X)\eta(Y)\}.$$

Definition. A (2n+1)-dimensional trans-Sasakian manifold M is said to be an η -Einstein manifold if its Ricci tensor S of type (0,2) is of the form

$$(2.26) S(X,Y) = ag(X,Y) + b\eta(X)\eta(Y),$$

where a,b are smooth functions on M. If b=0, then the manifold M becomes an Einstein manifold.

3. Contact Conformally Flat Trans-Sasakian Manifold

Definition. A (2n+1)-dimensional trans-Sasakian manifold is said to be contact conformally flat if it satisfies the condition

$$(3.1) C_0(X,Y)Z = 0.$$

Now, we prove the following result:

Theorem 3.1. If a (2n+1)-dimensional trans-Sasakian manifold M is contact conformally flat, then $\alpha^2 = \beta^2 + 1$.

Proof. Let M be a (2n+1)-dimensional trans-Sasakian manifold. Suppose M is contact conformally flat then the condition $C_0(X,Y)Z=0$ holds. Now, using (3.1) in (2.20) and taking inner product on both sides by ξ , we get

(3.2)
$$\eta(R(X,Y)Z) = \frac{1}{2n} [g(X,Z)S(Y,\xi) - g(Y,Z)S(X,\xi) - \eta(X)\eta(Z)S(Y,\xi) + \eta(Y)\eta(Z)S(X,\xi)] + 2[g(Y,Z)\eta(X) - g(X,Z)\eta(Y)].$$

In view of (2.12), (2.16) and (3.2), we get

$$(3.3) \qquad 0 = 2(\alpha^2 - \beta^2 - 1)[g(Y,Z)\eta(X) - g(X,Z)\eta(Y)] + 2\alpha\beta[g(\varphi Y,Z)\eta(X) - g(\varphi X,Z)\eta(Y)] + (X\alpha)g(\varphi Y,Z) - (Y\alpha)g(\varphi X,Z) - (X\beta)g(\varphi Y,\varphi Z).$$

Putting $X = \xi$ in (3.3) and using (2.1), (2.10) and (2.15), we obtain

(3.4)
$$(\alpha^2 - \beta^2 - 1)[g(Y,Z) - \eta(Y)\eta(Z)] = 0.$$

Since $g(Y,Z) - \eta(Y)\eta(Z) \neq 0$, we have $(\alpha^2 - \beta^2 - 1) = 0$. This implies that

$$\alpha^2 = \beta^2 + 1.$$

This completes the proof of the theorem.

4. ξ -Contact Conformally Flat Trans-Sasakian Manifold

Definition. A trans-Sasakian manifold of dimension (2n+1) is said to be ξ -contact conformally flat if the condition

$$(4.1) C_0(X,Y)\xi = 0$$

holds.

Theorem 4.1. Let M be a (2n+1)-dimensional trans-Sasakian manifold satisfying the condition $C_0(X,Y)\xi=0$, then $\alpha^2=\beta^2+1$.

Proof. Let us consider a (2n+1)-dimensional trans-Sasakian manifold M which satisfies the condition $C_0(X,Y)\xi=0$. Then by virtue of (2.1), (2.3), (2.8), (2.16) and (4.1) in (2.20), we get

$$(4.2) 0 = 2(\alpha^2 - \beta^2 - 1)\{\eta(Y)X - \eta(X)Y\} - (X\alpha)\varphi Y + (X\beta)Y - (X\beta)\eta(Y)\xi + 2\alpha\beta[\eta(Y)\varphi X - \eta(X)\varphi Y] + (Y\alpha)\varphi X - (Y\beta)X + (Y\beta)\eta(X)\xi.$$

Putting $X = \xi$ in (4.2) and using (2.1), (2.10) and (2.15), we obtain

(4.3)
$$(\alpha^2 - \beta^2 - 1) \{ \eta(Y) \xi - Y \} = 0.$$

Since $\eta(Y)\xi - Y = \varphi^2(Y) \neq 0$, we have $(\alpha^2 - \beta^2 - 1) = 0$. This yields

$$\alpha^2 = \beta^2 + 1.$$

Thus the theorem is proved.

From theorem 3.1 and theorem 4.1, we can state the following result:

Theorem 4.2. Trans-Sasakian manifolds of dimension (2n+1) which satisfy the conditions $C_0(X,Y)Z=0$ and $C_0(X,Y)\xi=0$ are equivalent.

5. Trans-Sasakian Manifold Satisfying $C_0(\xi,X).S=0$

Consider a trans-Sasakian manifold M of dimension (2n+1). Let S be the Ricci tensor of type (0, 2). We prove the following result:

Theorem 5.1. Let M be a (2n+1)-dimensional trans-Sasakian manifold. If M satisfies the condition $C_0(\xi,X).S=0$, then it is an Einstein manifold with scalar curvature $r=2n(2n+1)(\alpha^2-\beta^2)$.

Proof. Let M be a (2n+1)-dimensional trans-Sasakian manifold which satisfies the condition

(5.1)
$$C_0(\xi, X).S(U, V) = 0.$$

This condition implies that

(5.2)
$$S(C_0(\xi, X)U, V) + S(U, C_0(\xi, X)V) = 0.$$

Putting $V = \xi$ in (5.2) and using (2.16) and (2.22), we obtain

$$(5.3) S(X,U) = 2n(\alpha^2 - \beta^2)g(X,U).$$

Taking an orthonormal frame field at any point of the manifold and contracting over X and U in (5.3), we get

(5.4)
$$r = 2n(2n+1)(\alpha^2 - \beta^2).$$

From (5.3) and (5.4) it follows that the manifold M is an Einstein manifold with scalar curvature $r = 2n(2n+1)(\alpha^2 - \beta^2)$. This completes the proof of the result.

6. Trans-Sasakian Manifold Satisfying $C_0(\xi,X).C_0$ =0

Let M be a (2n+1)-dimensional trans-Sasakian manifold. Suppose the condition $(C_0(\xi,X).C_0)(U,V)Z=0$ holds in M. Then we have

Theorem 6.1. A (2n+1)-dimensional trans-Sasakian manifold satisfying the condition $C_0(\xi, X).C_0 = 0$ is contact conformally semi-symmetric if

$$0 = (\alpha^2 - \beta^2) \{ 2g(V, Z)X - g(X, V)Z - g(X, Z)V \}$$
$$-g(R(\xi, V)Z, X)\xi - R(X, V)Z.$$

Proof. Let us consider a (2n+1)-dimensional trans-Sasakian manifold which satisfies the condition $C_0(\xi, X).C_0(U,V)Z = 0$, then by definition we have

(6.1)
$$0 = C_0(\xi, X) C_0(U, V) Z - C_0(C_0(\xi, X) U, V) Z - C_0(U, C_0(\xi, X) V) Z - C_0(U, V) C_0(\xi, X) Z.$$

Using (2.22) in (6.1) we get

(6.2)
$$0 = R(\xi, X) \cdot C_0(U, V) Z + (\alpha^2 - \beta^2 - 2) [g(X, C_0(U, V)Z) \xi]$$

$$-\eta (C_0(U, V)Z) X - g(X, U) C_0(\xi, V) Z + \eta(U) C_0(X, V) Z$$

$$-g(X, V) C_0(U, \xi) Z + \eta(V) C_0(U, X) Z - g(X, Z) C_0(U, V) \xi$$

$$+ \eta(Z) C_0(U, V) X].$$

Taking inner product on both sides of (6.2) by ξ and using (2.24), we obtain

(6.3)
$$0 = g(R(\xi, X).C_{0}(U, V)Z, \xi) + (\alpha^{2} - \beta^{2} - 2)[g(X, C_{o}(U, V)Z) - \eta(X)\eta(C_{0}(U, V)Z) - g(X, U)\eta(C_{0}(\xi, V)Z) + \eta(U)\eta(C_{0}(X, V)Z) - g(X, V)\eta(C_{0}(U, \xi)Z) + \eta(V)\eta(C_{0}(U, X)Z) - \eta(Z)\eta(C_{0}(U, V)X)].$$

Putting $U = \xi$ in (6.3) and using (2.22), (2.23) and (2.25), we get

(6.4)
$$0 = g(R(\xi, X).C_0(\xi, V)Z, \xi) + (\alpha^2 - \beta^2 - 2)[g(R(\xi, V)Z, X) + \eta(R(X, V)Z) + (\alpha^2 - \beta^2)\{\eta(Z)g(X, V) - 2\eta(X)g(V, Z) + \eta(V)g(X, Z)\}].$$

This implies that

(6.5)
$$R(\xi, X) \cdot C_0(\xi, V) Z = (\alpha^2 - \beta^2 - 2) [(\alpha^2 - \beta^2) \{ 2g(V, Z) X - g(X, V) Z - g(X, Z) V \} - g(R(\xi, V) Z, X) \xi - R(X, V) Z].$$

From this it follows that the manifold is contact conformally semi-symmetric if the right hand side of (6.5) vanishes, i. e., if

$$0 = (\alpha^2 - \beta^2) \{ 2g(V,Z)X - g(X,V)Z - g(X,Z)V \}$$
$$-g(R(\xi,V)Z,X)\xi - R(X,V)Z.$$

This completes the proof of the theorem.

7. An Example of a 3-dimensional Trans-Sasakian Manifold

Let us consider a 3-dimensional manifold $M = \{(x, y, z) : (x, y, z) \in \mathbb{R}^3\}, z \neq 0$, where (x, y, z) are the standard coordinates in \mathbb{R}^3 . We choose the vector fields

(7.1)
$$e_1 = e^z \left(\frac{\partial}{\partial x} + y \frac{\partial}{\partial z} \right), \ e_2 = e^z \frac{\partial}{\partial y}, \ e_3 = \frac{\partial}{\partial z},$$

which are linearly independent at each point of M. Now we define a semi-Riemannian metric g on M as

(7.2)
$$g(e_1, e_3) = g(e_2, e_3) = g(e_1, e_2) = 0,$$

(7.3)
$$g(e_1, e_1) = g(e_2, e_2) = g(e_3, e_3) = 1.$$

Let η be a 1-form defined by $\eta(Z) = g(Z, e_3)$ for any vector field $Z \in M$ and φ be a (1, 1) tensor field defined by

(7.4)
$$\varphi(e_1) = e_2, \ \varphi(e_2) = -e_1, \ \varphi(e_3) = 0.$$

The linearity property of φ and g yields that

(7.5)
$$\eta(e_3) = 1, \ \varphi^2(Z) = -Z + \eta(Z)e_3, \ g(\varphi Z, \varphi U) = g(Z, U) - \eta(Z)\eta(U)$$
 for any $Z, U \in M$.

If we take $e_3 = \xi$ in (7.5), (φ, ξ, η, g) defines an almost contact metric structure on M.

By the definition of Lie bracket and (7.1) we have

$$[e_1, e_2] = e_1 e_2 - e_2 e_1 = e^z \left(\frac{\partial}{\partial x} + y \frac{\partial}{\partial z}\right) e^z \frac{\partial}{\partial y} - e^z \frac{\partial}{\partial y} \left(e^z \frac{\partial}{\partial x} + y e^z \frac{\partial}{\partial z}\right)$$
$$= y e^z e_2 - e^{2z} e_3.$$

Proceeding same way we obtain $[e_2, e_3] = -e_2$ and $[e_1, e_3] = -e_1$. Thus we have

(7.6)
$$[e_1, e_2] = ye^z e_2 - e^{2z} e_3, [e_2, e_3] = -e_2, [e_1, e_3] = -e_1.$$

Let ∇ be the Levi-Civita connection with respect to g then we have the Koszul's formula

(7.7)
$$2g(\nabla_{X}Y,Z) = Xg(Y,Z) + Yg(Z,X) - Zg(X,Y) + g([X,Y],Z) - g([Y,Z],X) + g([Z,X],Y)$$

By the use of (7.2), (7.3) and (7.6), (7.7) yields

$$\begin{cases}
\nabla_{e_1} e_3 = -e_1 + \frac{1}{2} e^{2z} e_2, & \nabla_{e_1} e_2 = \frac{1}{2} e^{2z} e_3, & \nabla_{e_1} e_1 = e_3, \\
\nabla_{e_2} e_3 = -e_2 - \frac{1}{2} e^{2z} e_1, & \nabla_{e_2} e_2 = e_3 + y e^z e_1, & \nabla_{e_2} e_1 = -y e^z e_2 + \frac{1}{2} e^{2z} e_3, \\
\nabla_{e_3} e_3 = 0, & \nabla_{e_3} e_2 = -\frac{1}{2} e^{2z} e_1, & \nabla_{e_3} e_1 = \frac{1}{2} e^{2z} e_2,
\end{cases}$$

In view of (2.6), (7.2), (7.3) and (7.4) we have

$$\nabla_{e_1} \xi = \beta e_1 - \alpha e_2$$
, $\nabla_{e_2} \xi = \alpha e_1 + \beta e_2$ and $\nabla_{e_3} \xi = 0$ for $e_3 = \xi$. Comparing these equations with (7.8) (first column), we get $\alpha = -\frac{1}{2}e^{2z}$ and $\beta = -1$.

Again, by virtue of (2.7) and $(\nabla_X \eta) Y = \nabla_X \eta(Y) - \eta(\nabla_X Y)$ we obtain

$$\left(\nabla_{e_{1}}\eta\right)e_{1} = \beta = -1, \ \left(\nabla_{e_{2}}\eta\right)e_{1} = \alpha = -\frac{1}{2}e^{2z}, \ \left(\nabla_{e_{3}}\eta\right)e_{1} == 0.$$

Thus from above calculation the conditions (2.6) and (2.7) are satisfied and the structure (φ, ξ, η, g)

is a trans-Sasakian structure of type (α, β) where $\alpha = -\frac{1}{2}e^{2z}$ and $\beta = -1$. Consequently $M^3(\varphi, \xi, \eta, g)$ is a trans-Sasakian manifold.

Shah/BIBECHANA 12 (2015) 80-88: p. 88

References

- [1] A. Gray, and L. M. Harvella, Ann. Mat. Pura. Appl., 123(4)(1980) 35-58. http://dx.doi.org/10.1007/BF01796539
- [2] J. A. Oubina, Publ. Math. Debrecen, 32(1985) 187-193.
- [3] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math., Vol. 509, Springer-Verlag, Berlin, (1976).
- [4] D. E. Blair, Riemannian geometry of contact and sympletic manifolds, Birkhauser Boston, 2002.
 - http://dx.doi.org/10.1007/978-1-4757-3604-5
- [5] K. Kenmotsu, Tohoku Math. J., 24(1972) 93-103.
- [6] U. C. De and M. M. Tripathi, Kyungpook Math. J., 43(2003) 247-255. http://dx.doi.org/10.2748/tmj/1178241594
- [7] R. J. Shah, Kathmandu Univ. J. of Sci., Eng. and Tech., 8(1)(2012) 81-87.
- [8] J. C. Jeong, J. D. Lee, G. H. Oh. and J. S. Pak, Bull. Korean Math. Soc., 27(1990) 133-142.
- [9] H. Kitahara, K. Matsuo and J. S. Pak, Bull. Korean Math. Soc., 27(1990) 27-30.
- [10] J. C. Jeong and J. K. Park, Comm. Korean Math. Soc., 8(1993) 689-697.
- [11] J. S. Pak, J. C. Jeong and W. T. Kim, J. Korean Math. Soc. 28(1991) 267-274.