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Abstract

The Sitnikov's problem is a special case of rasti¢three body problem if the primaries are of équassesrty, =

m, = 1/2) moving in circular orbits under Newtoniarde of attraction and the third body of massmaeves along
the line perpendicular to plane of motion of prifaar Here oblate spheroid primaries are taken.sbhation of the
Sitnikov's circular restricted three body probleas been checked when the primaries are oblate gghéte
observed that solution is depended on oblate paeareof the primaries and independent variable nt. For this
the stability of non-trivial solutions with the dlaateristic equation is studied. The general equaif motion of the

infinitesimal mass under mutual gravitational fi@fitwo oblate primaries are seen at equilibriunmfzo Then the
stability of infinitesimal third body ghas been calculated.
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1. Introduction

The primaries in the Sitnikov's problem move on tireumference of the same circle if the primades
spheroid in shape. But if the primaries are obkgheroid in shape then due to their oblateness the
primaries will not be equidistant from their centémass. The primaries should be equidistant fitosir
centre of mass. For this Principal axes of theteltb@dies should be parallel to the synodic axeJlaa
masses of both the primaries should be equal.

The system consists of two oblate primaries withaégnassesnf, = m, = 1/2). The third body of mass
mz is much less than the masses of the primariess i potential between two bodies andm, is
given by

=

W:GM%+Gngm9
r r
2 _ 2
A:a c

= oblatenless of the primaries

wherea, by, ¢ (i = 1, 2) be the semi axes of the primaries. Whermthearies are oblate;, = b;.

An integrable case in restricted problem of thrediés by imposing further restrictions on the rettd
three body problem, by supposing the two finiteibsaf equal masses and an infinitesimal body ngpvin
in their common axis of revolution has been studigdlacMillan [1].
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In three body problem two primaries of equal massebkthese two moving in (i) circular orbits angl (i
elliptic orbits around their center of mass hasamtgd by Sitnikov [2]. The third body (infinitesiina
mass) is moving along a line which is perpendictathe plane of primaries and passing through the
center of mass of the primaries.

The stability and bifurcation of Sitnikov motionveastudied by Perdios et.al. [3]. The family ofipdic
Sitnikov motions can be recognized as a speci@ (as1/2) of the faminLf of three dimensional orbits

emanating ak; for all admissible values ¢f and is denoted bﬁ. The existence of such a family offers

the opportunity to study the stability of bifureats of one-dimensional motions under perturbations
two additional dimensions which tends to take tlwvimg particle directly into the full three-dimeosal
space.

The stability of motion in the Sitnikov problem leagtudied by Soulis et al. [4]. They have variegl th
mass of the infinitesimal body O < 10°. They have found that as;increases, the domain of allowed
motion grows significantly and chaotic regionsthie phase space appear through a series of sadtie-no
bifurcations.

The equations of motions have the non-trivial ohg obtained by Mccuskey [5]

,_ 1 8A
=N —F +F
The equation of motion of the third body has olgdiby Suraj et al. [6], as follows
d’z N z 9Az 15A7°

= + - =
dt2 (22+r2)3/2 (22+r2)5/2 (Z 2+r 3 712

2. Solutions By Lindsted-Poincare Method
Equation of motion of third body is
dz, z . 9z _ 15A7 _
dt2 (22+r2)3/2 (22+r2)5/2 (22+r2)7/2

Raju Ram Thapa, et al. [7] has obtained the salu®follows:

5

3 N o
z=ccosnt+—|( cogt— co c’+ 23cgs— 24cop3 B)-
7 64( ¥ gﬁ) 4096( K g CO)

+27C7 [ﬂcosnt— 297 cosat+—3 CoSR8 - 1 coszv}
8 32768 16384 2048 32768

1 _ 343 _ 5
+A[32(cosr7t cosBt)c +1024( 23cog - 24cogtd+  cogfc

4

+ 27(£cosr/t __297 cos 3t +i cosht —

cosf ¢+ |.
32768 1638 2048 32768

3. Stability:
The general equations of motion of the infinitedimass under the mutual gravitational field of two
oblate primaries are
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0Q

X=2ny=—

Y o0Xx
y+2n>'<=a—Q (1)

oy

. _0Q

2=—

0z

wheren is the mean angular velocity of the primaries mgwn the common circular orbit of radiar.
Here,

1 A 3AZ°
Q= £+ 7~ 3 (2)
(ZZ+r%)2 (2°+1r%2 (z2°+19)?2
b=1+35A
3

A = oblateness parameter of the primaries.

Hence from (2), it is clear thd® is independent ok andy and depends only upanalone hence

0Q z 9Az 15A7°
3z £l 5+ 7 (3)
(Z2+b)2 (Z2+b)? (z*+b)?

For the equilibrium solution of the restricted #fgody problem,
0 _00_o_,
ox oy o0z

Thus the system of equations (1) can be written as

X—Zny=%—9: f(x,y,2) (say
X

y+2nX:g—Q = g(x,y,2) (say) at the equilibrium points 4)
y

,_0Q
=

5 Nxy.2) (say)
z

Let us denote the equilibrium point 6@, 0,2, we shall now communicate small displacengent
n, ¢ in the coordinates &f such thak =0 +&, y = 0 +n, z = 7 + { satisfy the above equation.
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Thus,

L
=25 -2m) = 1 (0+€,047 2 +{)

d’n
e -2né =g(0+¢&,0+ 2+ )

2 2
c:jtf =h(0+£,0+n,2,+{) Whereo(llei0= C

= &-2p = (0,0 )+ 5(ﬂj +/7(ﬂ] +Z(ij + higher order infinitesima
0X Jo Y ), 0

fj+2né =g(0,0,z, )+$[a—gj +,7[6gj Z(a—gj + higher order infinitesima
0X J, oy Z),

Z:h(0,0,20)+$(@j +n oh +Z(—hj + higher order infinitesimal:
0X J, ay ), 0z ),

Since (0, 0z)) is a solution of the set of equation (4)

0Q _0Q _0Q -0, hence

0X ay 0z
f(0, 0,2 = g(0, 0,20) =h(0, 0,2) =

E-2vi=§— [GQJ +qi(a—9j +gi(0_9j + higher order infinitesimal
ox\ ox ), ~oy\ox ), ~ 0z\ ox ),
Thus, /7+2nf E GQ +n— 9 a—Q +Zi a—Q + higher order infinitesimal
dy oy\ gy ), ~0z\ dy ),
{=8— (GQJ 9 (GQJ 9 (G—Qj + higher order infinitesima
0z oy\ 0z 0z\ 0z ),

Neglecting higher order terms &fn, ¢, we get the variational equations as
= & -2 = &Q) +nQY, +{Q7,
ij +2né = Q5 +nQY, +{QY ()
£ =8Q0,+nQ%, + Q)

where Q202,02 ... etc representthevalueé?i( ] o(9Q ,"("Qj . at the equilibrium
ax | ax ), ax ay ox\ 0z

points.
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Now the system of equations (5) can be writtethéform of a single matrix equation as

&l [o o o 1 0 0 [&]
A o 0o o0 o0 1 0 |g
7| o o 0 0 01 ¢ ©
Fl% 9 F o o [¢
Al 198 @) @ -2n 0 o |j
Zl, 1 9 Q. o 0 o |Zf,
i.e. X = AX (7)

when [{ n ¢ én Z]T is a 6 x 1 column matrix of derivatives of the iséions of the
coordinates of the equilibrium points.

0 0 0 1 0 O
0 0 0 0 1 0
0 0 0 0 0 1
A=
Q Q% Q% 0 20 0
Q° Q% Q% -2n 0 0
Q9 Q2 0 0 0
L 16x6

is a 6x6 square matrix of constants.

0 _N"n0 —_ Ao —
Q%,=0%=0)=0
0 _ 0 _ 0 _
Q) =Q) =Q =0

Q) =Qj =0 andQy, # (

[0 0 O 1 0 0

00 O 0O 1 0O

0 0 O 0O 0 1
A=

00 O 0O & O

00 0 -n 0 O

00Q 0 0 0
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If any matrixX satisfies the equatiolX = AX (8)
The first in the solution of (7) is to found as treue ofX.
We can write (8) as

(A-A)X=0 9)
wherel is the 6x6 unit matrix.

The set of six simultaneous linear equations in wgtknowns E,/],Z,f,/?,f will have non-trivial
solutions provided the determinant of the matfix Al) vanishes. i.e.

CA-AIO=0 (20)
To check the stability of the (10) non-trivial stduns. Let us find values @f from (10) i.e. from

= (A2 +4n2)(A1°-Q°) =0 (11)

i.e. there are six values of Let /112,/122,A32 be three roots corresponding each factor of (The
conditions for stable solution are

A2<0 fori=1,2,3

From (11)

A =0=1,=1,=0

= A, =+2ni (imaginary)

(12)
= A, =2ni, A,=-ni
whenA? -Q?2 = 0= A, =+,/Q°
oQ _ z 9AZ 15A7°
But E - 3 - 5 + 7
(Z+b%)2  (2°+b%)? (2°+Db%)?
%Q _ z 322 9A 90AZ2 109\

—_ + —_ §+ —_
2

=
0z

3 5 7 9
(ZZ+b%)?  (22+b%)? (z°+b%)? (2*+b)? (z°+b)2
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2 3 4
Since 7z is very small in comparison of b henef)é <<1 and so(%) (%) (%) ,... are
negligible.
Thus we get

Q° = i—g_A:— 1 + A

z _bs b 3 5
(1+16Aj (1+16Aj
3 3

-3 -5
=- (1+1—6Aj +9A(1+£6AJ using ® = }@:b
3 3 3

=-[1+A

Q2 =-(1+A)
= A =-(1+A)
= A =+ i1+ A
= A, SINIHA; A, =-iV1+ A

Thus, all the six roots of the characteristic euagre 0, 0; 2ni, -2niix/1+ A: —iv/1+ A and hence the
equilibrium position of the Sitnikov restricted ¢er body problem are stable.

4. Conclusion

The condition of stability is satisfied by solutiohthe Sitnikov's problem the third body is osiry in
nature. It displaced slightly from its equilibriuosition but stayed in the neighbourhood of the
equilibrium point.
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