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Abstract 
The Sitnikov's problem is a special case of restricted three body problem if the primaries are of equal masses (m1 = 
m2 = 1/2) moving in circular orbits under Newtonian force of attraction and the third body of mass m3 moves along 
the line perpendicular to plane of motion of primaries. Here oblate spheroid primaries are taken. The solution of the 
Sitnikov's circular restricted three body problem has been checked when the primaries are oblate spheroid. We 
observed that solution is depended on oblate parameter A of the primaries and independent variable t.τ = η For this 

the stability of non-trivial solutions with the characteristic equation is studied. The general equation of motion of the 
infinitesimal mass under mutual gravitational field of two oblate primaries are seen at equilibrium points. Then the 
stability of infinitesimal third body m3 has been calculated. 
 

                        © 2014 RCOST:  All rights reserved.         
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1. Introduction  
 

The primaries in the Sitnikov’s problem move on the circumference of the same circle if the primaries are 
spheroid in shape. But if the primaries are oblate spheroid in shape then due to their oblateness the 
primaries will not be equidistant from their center of mass. The primaries should be equidistant from their 
centre of mass. For this Principal axes of the oblate bodies should be parallel to the synodic axes andThe 
masses of both the primaries should be equal. 
 

The system consists of two oblate primaries with equal masses (m1 = m2 = 1/2). The third body of mass 
m3 is much less than the masses of the primaries. Thus the potential between two bodies m1 and m2 is 
given by 

   1 2 1 2
3

( )Gm m GA m m
v

r r

+
⇒ − = +  

                                           
2 2

10

a c
A

−=  = oblatenless of the primaries 

where ai, bi, ci (i = 1, 2) be the semi axes of the primaries. When the primaries are oblate, ai = bi. 
 

An integrable case in restricted problem of three bodies by imposing further restrictions on the restricted 
three body problem, by supposing the two finite bodies of equal masses and an infinitesimal body moving 
in their common axis of revolution has been studied by MacMillan [1]. 
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In three body problem two primaries of equal masses and these two moving in (i) circular orbits and (ii) 
elliptic orbits around their center of mass has obtained by Sitnikov [2]. The third body (infinitesimal 
mass) is moving along a line which is perpendicular to the plane of primaries and passing through the 
center of mass of the primaries. 

The stability and bifurcation of Sitnikov motion have studied by Perdios et.al. [3]. The family of periodic 

Sitnikov motions can be recognized as a special case (µ =1/2) of the family 3
1L  of three dimensional orbits 

emanating at L1 for all admissible values of µ and is denoted by 11L . The existence of such a family offers 

the opportunity to study the stability of bifurcations of one-dimensional motions under perturbations in 
two additional dimensions which tends to take the moving particle directly into the full three-dimensional 
space. 
The stability of motion in the Sitnikov problem have studied by Soulis et al. [4]. They have varied the 
mass of the infinitesimal body 0 < m < 10-3. They have found that as m3 increases, the domain of allowed 
motion grows significantly and chaotic regions in the phase space appear through a series of saddle-node 
bifurcations. 

The equations of motions have the non-trivial solutions obtained by Mccuskey [5] 

2
3 5

1 8A
n

r r
⇒ = +  

The equation of motion of the third body has obtained by Suraj et al. [6], as follows 
2 2

2 2 2 3/ 2 2 2 5/ 2 2 2 7 / 2

9 15
0

( ) ( ) ( )
⇒ + + − =

+ + +
d z z Az Az

dt z r z r z r
 

 
2. Solutions By Lindsted-Poincare Method 
 

Equation of motion of third body is 

( ) ( ) ( )
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Raju Ram Thapa, et al. [7] has obtained the solution as follows: 
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3. Stability:  

The general equations of motion of the infinitesimal mass under the mutual gravitational field of two 
oblate primaries are  
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where n is the mean angular velocity of the primaries moving on the common circular orbit of radius a/2. 

Here, 
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A = oblateness parameter of the primaries. 

Hence from (2), it is clear that Ω is independent of x and y and depends only upon z alone hence 

0.
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For the equilibrium solution of the restricted three body problem, 

0.
x y z

∂Ω ∂Ω ∂Ω= = =
∂ ∂ ∂

 

 

Thus the system of equations (1) can be written as 
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 at the equilibrium points              (4) 

 

 
Let us denote the equilibrium point as L(0, 0, z0), we shall now communicate small displacement ξ, 
η, ζ in the coordinates of L such that x = 0 + ξ, y = 0 + η, z = z0 + ζ satisfy the above equation. 
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Thus, 
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Since (0, 0, z0) is a solution of the set of equation (4) 
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Neglecting higher order terms of ξ, η, ζ, we get the variational equations as  
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points. 
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Now the system of equations (5) can be written in the form of a single matrix equation as  

                    
0 0 0

0 0 0

0 0 0

6 16 1 6 6

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 2 0

2 0 0

0 0 0

xx yx zx

xy yy zy

zx zy zz

n

n

ξξ

ηη

ζζ

ξξ

ηη

ζζ ×× ×

    
    
    
    
    
    =
    Ω Ω Ω
    
    Ω Ω Ω −
    
    Ω Ω Ω     

&

&

&

&&&

&&&

&&&

                      (6) 

 

                       i.e. X AX=&                        (7) 
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& &&  is a 6 × 1 column matrix of derivatives of the variations of the 

coordinates of the equilibrium points. 
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If any matrix X satisfies the equation AX = λX  (8) 
 
The first in the solution of (7) is to found as the value of X. 

We can write (8) as  

(A - λI) X = 0 (9) 

where I is the 6×6 unit matrix. 
 

The set of six simultaneous linear equations in six unknowns , , , , ,ξ η ζ ξ η ζ& &&  will have non-trivial 

solutions provided the determinant of the matrix (A - λI) vanishes. i.e.  

A - λI = 0 (10) 

To check the stability of the (10) non-trivial solutions. Let us find values of λ from (10) i.e. from  
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Thus, all the six roots of the characteristic equation are 0, 0; 2ni, -2ni, 1 ;  1+ − +i A i A  and hence the 
equilibrium position of the Sitnikov restricted three body problem are stable. 

 

4. Conclusion 
 

The condition of stability is satisfied by solution of the Sitnikov's problem the third body is oscillatory in 
nature. It displaced slightly from its equilibrium position but stayed in the neighbourhood of the 
equilibrium point. 
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