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Forest ecosystems are globally recognized 
for their critical role in terrestrial carbon 
dynamics, providing invaluable services to 

humankind and acting as significant carbon sinks 
(Bonan, 2008; Pan et al., 2011). Since the onset of 
the industrial revolution, drastic climate changes 
have been predominantly attributed to human 
activities that escalate greenhouse gas emissions, 
particularly carbon dioxide (CO2), methane (CH4), 
and nitrous oxide (N2O). Among these, CO2 is 
the primary contributor, with its atmospheric 
concentration having increased dramatically 
since pre-industrial times (Forster et al., 2007). 
According to the latest data from the National 
Oceanic and Atmospheric Administration 
(NOAA), CO2 levels have reached unprecedented 
highs, crossing 421 parts per million (ppm), 
signaling an urgent need to understand and 
enhance carbon sequestration processes (NOAA, 
2022).

Forests worldwide play a pivotal role in 
sequestering carbon, accounting for an estimated 
global carbon uptake of around 900 petagrams 

(Pg C), and sequestering about 1.1 teragrams (t C) 
annually (Sabatini et al., 2019). Photosynthesis 
enables plants to absorb atmospheric CO2, 
releasing oxygen and incorporating carbon into 
their biomass and soil. This carbon allocation 
across various forest compartments, including 
above-ground and below-ground biomass, 
dead wood, litter, and soil organic matter, and 
the resulting carbon fluxes from leaf and fine 
root turnover, are essential to understanding 
ecosystem dynamics (Pan et al., 2011; IPCC, 
2014). In European temperate forests, the total 
carbon storage is estimated to be approximately 
110 t C/ha, with soil contributing up to 65 t C/
ha, highlighting the importance of these carbon 
reservoirs (Brunner & Godbold, 2007).

In addition to natural processes, incremental 
growth in trees also suggests an increase in carbon 
storage. This is particularly evident in tree trunks, 
where their growing biomass is closely correlated 
with the sequestered carbon content (Stephenson 
et al., 2014). Accurate quantification of biomass—
and, by extension, carbon reserves—requires both 
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direct measurement techniques, such as harvesting 
trees for biomass calculation, soil coring for 
below-ground carbon content, and litter traps for 
detritus biomass (Rustad et al., 2001), as well as 
indirect methods involving allometric models that 
relate tree dimensions to dry biomass (Chave et al., 
2014). Biomass expansion factors (BEFs) are also 
used in conjunction with these models to adjust 
for variations in biomass accumulation depending 
on tree size, age, and forest management practices 
(Penman et al., 2003).

Indirect methods, while less invasive and more 
practical than direct methods over large scales, 
depend heavily on the accuracy and applicability 
of the allometric models and BEFs used. These 
models are crucial for estimating the amount of 
carbon sequestered within a forest ecosystem, 
contributing to our understanding of global 
carbon budgets and informing climate change 
mitigation strategies. Ensuring that the allometric 
models are region-specific and representative 
of the true complexities of forest structures and 
species compositions is vital (Lehtonen et al., 
2004; Gasparini et al., 2015).

This research was part of the ForOaks Project, 
supported by the Green Fund, which aims to 
enhance the national greenhouse gas inventory 
in Greece by dynamically assessing CO2 
sequestration in deciduous oak forests and 
evergreen broadleaved forests. In this regard, 
this study was conducted to ascertain the optimal 
allometric model for determining the aboveground 
biomass of the deciduous oak forests located in 
the Regional Unit of Xanthi, northern Greece, 
which are under the jurisdiction of Xanthi Forest 
Service (XFS). By scrutinizing the established 
allometric models in conjunction with the data 
from the local forest management plans, our 
objectives were to refine the biomass estimates 
and elucidate the carbon dynamics within these 
temperate woodlands.

Materials and methods

Study area

The study was conducted in the Year 2023 in the 
oak-dominated deciduous forests located within 

the Xanthi regional unit of East Macedonia and 
Thrace, northern Greece (see Figure 1). The study 
area is situated between 41.0771312-41.4079084 
N latitudes and between 24.6089329-25.2263813 
E longitudes. The altitude of the terrain ranges 
from 50 m to 1827 m above the mean sea level. 
The study area exhibits Csa (Hot-summer humid 
continental) and Dfb (humid continental mild 
summer, wet all year) types of climate (Köppen-
Geiger Explorer, nondated). The annual average 
temperature varies from 4.87 oC to 14.57 oC, 
and the annual average precipitation varies from 
532 mm to 773 mm (WorldClim, nondated). 
Encompassing over an area of 34,791.92 ha, these 
forests constitute 55.30% of the region's forest 
cover, as outlined in the XFS' official management 
plans (XFS, 2023a, 2023b, 2023c, 2023d, 2023e, 
2023f, & 2023g). The study area is characterized 
by a mosaic of tree species, reflecting a blend of 
broadleaf deciduous and evergreen vegetation. 
The area is mostly dominated by oak species such 
as Quercus frainetto, Q. petraea, Q. pubescens, 
and Q. cerris associated with beech (Fagus 
sylvatica) and other broadleaf species. 

Methods used

Utilizing the high-resolution satellite imagery 
from the Google Earth Pro, we delineated the 
study area (indicated in red color in Figure 1). 
Nested within this domain were several forest 
complexes (each indicated in distinct color in 
Figure 2): Thermes-Satres (white), Kotili (blue), 
Oreo (black), Echinos (brown), Miki (purple), 
Gerakas-Xanthi-Kimmeria (green), and Drimos 
(orange). The red markers, in Figure 2, pinpoints 
the locations of the sample plots established 
for the measurement of tress for evaluation of 
biomass and allometric relationships.
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Figure 1: Screenshot of Google Earth Pro showing the forested areas under the jurisdiction of 
XFS, indicated in red color (Source: Google Earth, 2023).
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Figure 2: Jurisdiction of XFS- showing the forest complexes (stand blocks) in distinct colors- 
Thermes-Satres (white), Kotili (blue), Oreo (black), Echinos (brown), Miki (purple), Gerakas-
Xanthi-Kimmeria (green), and Drimos (orange); red pins correspond to sampling points.

Criteria for choosing biomass allometric models 
to test

Selecting the right biomass allometric models 
is of paramount importance for the accurate 
assessment of forest biomass, especially 
when direct measurements are impractical or 
unfeasible. Following the structured methodology 
recommended by the Intergovernmental Panel on 
Climate Change (IPCC), we adopted a systematic, 
tiered approach to identify the models that provide 
the best fit for our study's specific requirements 
(Penman et al., 2003; IPCC, 2006).

The Tier 1 approach is considered the most 
fundamental level of the IPCC framework, where 
default models and conversion factors based on 
global averages are employed. Although Tier 
1 models are readily accessible and broadly 
applicable, they are often too generalized. This 
can result in substantial discrepancies when 

applied to localized contexts, thus compromising 
precision and potentially introducing significant 
uncertainties in regional biomass estimations 
(Goetz & Dubayah, 2011; Henry et al., 2011). 

Tier 2 builds upon the foundation of Tier 1 by 
introducing the enhanced accuracy based on the 
country-specific or regional allometric equations. 
These models, based on datasets gathered from 
biomes and ecological zones akin to those being 
studied, provide a moderate level of specificity 
without necessitating the comprehensive data 
inputs of more advanced tiers. By integrating 
localized growth patterns and species-specific 
attributes, Tier 2 models bridge the gap between 
the generalizations of global averages and the 
granular detail of localized field data, offering a 
sensible compromise for many research endeavors 
(Chave et al., 2014; McRoberts et al., 2012).
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At the apex of the tiered system, Tier 3 
epitomizes precision through the adoption of 
site-specific allometric equations. These models 
are developed from rigorous and extensive field 
research, tailored to the unique conditions of the 
study area. They consider localized climate, soil 
properties, and forest management practices, 
thereby affording scientists the capability to 
conduct finely tuned biomass estimations. While 
Tier 3 yields the highest degree of accuracy, its 
employment is contingent upon the availability of 
substantial field data, extensive research efforts, 
and often larger financial resources, which can 
limit its applicability, particularly in less-studied 
or -funded regions (Pilli et al., 2006).

In our research, we aligned with the Tier 2 
protocol due to its viable blend of precision and 
data accessibility. The rationale for this choice 
were based on the following considerations:

1.	 Tier 1 models are insufficient for our study 
purpose because of their universal nature, 
not accounting for the heterogeneity inherent 
in the regional ecological settings. Their 
application could lead to misrepresentations 
of the actual biomass in our study area due to 
the absence of regional calibration (Sileshi, 
2014).

2.	 Tier 2 offers an intermediate route, relying 
on a wealth of data that has been tailored to 
the Greek context, specifically addressing 
the characteristics of the oak species that 
dominate our study landscapes. The use of 
these models facilitates more reliable biomass 
estimations that harmonize better with the 
ecological nuances of the Mediterranean 
region.

3.	 Although Tier 3 represents the optimum in 
terms of model accuracy, it is not a feasible 
option given the limitations in our data 
collection capabilities and the extent of 
resources currently at our disposal. Engaging 
with Tier 3 would necessitate a considerable 
elevation in the scope and breadth of our 
field measurements, a venture beyond the 
constraints of our current research project 
(Schroeder et al., 1997).

Two peer-reviewed allometric models and two 
BEF models were adopted on the basis of 
their relevance to our study area and focal 
species. They are as follows: 

1.	 The BEF model used for estimating the 
biomass in a study conducted by Ganatsas 
et al. (2022) in the 77-year-old oak forest 
(dominated by Quercus frainetto and is in the 
process of conversion from coppice to high 
forest) of Cholomon Mountain in Chalkidiki, 
northern Greece was:

	 B=v×BEFD,

	 where, 'B' refers to the aboveground tree’s 
biomass (t), 'v' refers to the aboveground 
tree’s volume over bark (m3), and 'BEFD' 
refers to the Biomass Expansion Factor with 
the inclusion of wood Density which is equal 
to 1.011.

2.	 The allometric model used for estimating the 
biomass in the study conducted by Manolis 
et al. (2016) in the Gorgiani oak forest 
(dominated by Quercus frainetto with other 
oak species present sporadically) in Grevena, 
northwestern Greece, was:

	 B=35.3660×d2.9902,

	 where, 'B' refers to the aboveground tree’s 
biomass (gr), and 'd' refers to the class of 
diameter at breast height (DBH) over bark 
(cm).

3.	 The allometric model used for estimating the 
biomass in the study conducted by Zianis 
et al. (2016) in the Taxiarchis experimental 
forest, consisting of the same tree species as 
in the study area of Ganatsas et al. (2022), 
located on the Chalkidiki peninsula, northern 
Greece was:

	 B=0.1341×d2.47,

	 where, 'B' refers to the aboveground tree’s 
biomass (gr), and 'd' refers to the class of 
diameter at breast height (DBH) over bark 
(cm).
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4.	 The BEF model used for estimating the 
biomass in the study conducted by Penman 
et al. (2003) was: 

B=v×BWD×BEF,

where, 'B' refers to the aboveground tree’s 
biomass (t), 'v' refers to the aboveground 
tree’s volume over bark (m3), 'BWD' refers 
to the basic wood density (kgr of dry weight 
per m3 of green volume = 700, FAO, 2023), 
and 'BEF' refers to the biomass expansion 
factor, with values ranging from 1.15 to 
3.2. The upper limit of the range represents 
young forests or forests with low growing 
stock while the lower limit represents mature 
forests or those with high growing stock 
(Penman et al., 2003). 

Input data

The application procedure for the four models was 
as follows: For the calculation of the minimum 
sample size required (minimum number of sample 
areas required) for a finite population with size np 
in the areas of deciduous oak forests in the study 
area (the area of responsibility of the XFS), the 
formula of Stauffer (1982) was applied:

,

where, 'N' stands for size of finite population (= 
1909) of deciduous oak stands; 't' stands for value 
of student (t) distribution, for a probability of 
5% and 1 (pre-sample size) degree of freedom; 
'cv' stands for coefficient of variance of the pre-
sample; 'e' stands for desired precision (acceptable 
error) = 0.10 (arbitrarily defined).

As a pre-sample (pilot sample), we defined 10 
values of the total oak wood stock (m3), selected at 
random from the 1909 deciduous oak polygons, as 
recorded in the vegetation polygon mapping of the 
XFS’ s management plans. Random sampling of 
the 10 pre-sample values was repeated 599 times 
(Wilcox, 2001). As per the above formula, a total 
of 48 sampling points had to be distributed on the 
map. The distribution was done using the Collect 
Earth Grid Generator Tool (OFCA, nondated). 
This tool enables the automated generation of 

spatially distributed sampling points, ensuring a 
systematic and unbiased sample selection process.

Sampling process involved 

1.	 Integration of tabular data with spatial 
maps: The management plans provided 
detailed forest inventory data, including 
the number of trees per diameter at breast 
height (DBH) class, volume over bark, and 
area per stand block. These tabular data 
were linked with spatial maps of the forest 
stands obtained from the XFS, allowing us 
to associate specific forest stands with their 
corresponding inventory data.

2.	 Selection of representative strata: Forest 
stands were categorized into strata based on 
their DBH classes and wood stock amounts 
to ensure that the sampling points covered 
the entire range of variability within the 
study area. This stratified sampling approach 
ensured that each stratum of the forest 
ecosystem, representing different age groups 
and biomass densities, was adequately 
sampled.

3.	 Mapping and distribution of sampling 
points: Using the Collect Earth Grid 
Generator Tool, we distributed the 48 
sampling points across the study area. Each 
sampling point was precisely mapped and 
associated with a designated block and stand 
within the boundaries of the XFS. The use 
of high-resolution satellite imagery from 
Google Earth Pro facilitated the accurate 
placement and verification of these points.

4.	 Data collection from each sampling point: 
From each sampling point, we collected 
detailed forest inventory data, such as the 
number of trees per DBH class and volume 
over bark for the calculation of biomass 
estimates. For instance, the total biomass 
estimates for Sampling Point 12 within stand 
'd' of Block 11 in the Thermes-Satres complex 
were calculated using the aforementioned 
models as highlighted in Table 1. 
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Table 1: Biomass calculations through Ganatsas et al. (2022), Manolis et al. (2016), and Zianis et al. 
(2016) models

DBH 
class
over 
bark
'd' (cm)

No.
of trees
'Ν' in 
0.1 ha 
sample 
plot 

Volume
over
bark 'v'
(m3); Area 
'A' (ha)

Biomass 
via 
Ganatsas 
et al. 
(2022)
B=v × 
BEFD/A
(t/ha)

Biomass via Manolis et 
al. (2016)
B=(35.3660 × 
d2.9902×N)×0.001
(kgr)

Biomass via Zianis et 
al. (2016)
B=0.1341×d2.47×N
(kgr)

 10 21

1498; 
36.16 41.88

726.1147139 831.09

12 5 298.2110342 310.44

14 5 472.8332395 454.29

16 7 986.8327517 884.51

18 8 1603.9535030 1352.20

20 4 1098.9699740 877.07

22 8 2922.7268530 2219.74

24 4 1895.6300690 1375.97

26 1 602.0592700 419.19

28 1 751.4115873 503.40

30 1 923.5787213 596.92

Based on the results displayed in Table 1 above, the estimated total biomass for the Sampling Point 12 
was:

	� 41.88 t/ha, using the Ganatsas et al. (2022) model;

	� 122.82 t/ha, using the Manolis et al. (2016) model; and

	� 98.25 t/ha, using the Zianis et al. (2016) model. 

Finally, the method of biomass estimation by Penman et al. (2003) was implemented with the following 
approach: 

The volumes of oak wood and the corresponding areas per stand block were extracted from the 
management plans' yield tables. We calculated the biomass at each sampling point, applying the BEF 
values against the volume data. For example, for the same sampling point (i.e., sampling point 12, block 
11, stand d, in the Thermes-Satres complex), we determined the biomass with BEF as shown in Table 2.
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Table 2: Biomass calculations through BEF (Penman et al., 2003)

Volume over 
bark (m3)

BEF (Penman 
et al., 2003) Area (ha) Biomass via BEF

B=v×BWD×BEF×0.001/area (t/ha)

1498 [1.15 to 3.2] 36.16 [33.35 to 92.80]

Based on the data presented in Table 2, the estimated biomass through the BEF method within the 
Sampling Point 12 ranged from 33.35 to 92.80 t/ha, accounting for the varying growth stages of the oak 
trees.

Results

The average aboveground biomass was estimated at 103.807±16.41 t/ha, 242.946±47.09 t/ha, and 
165.734±25.79 t/ha using the models of Ganatsas et al. (2022), Manolis et al. (2016), and Zianis et 
al. (2016), respectively. Using the BEF of Penman et al. (2003), the average aboveground biomass 
was estimated to be within the limit of 82.655±13.06 t/ha (lower limit BEF=1.15) to 229.997±36.35 t/
ha (upper limit BEF=3.2). The comparison between the tested biomass estimation models is given in 
Figure 3.

Figure 3: Comparison between the tested biomass estimation models.

The examination of the forest structure of our study area, with the distribution among DBH classes of 
the trees in the forest’s stands (Figure 4), clearly indicated that the stands were young, thus having a high 
net productivity. Trees within these young stands were in an ascendant phase of their growth, marked by 
higher NPP and, hence, a significant accumulation of biomass.
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Figure 4: DBH distribution of the stands.

Discussion 

Our study evaluated the applicability of the 
biomass models proposed by Ganatsas et al. 
(2022), Manolis et al. (2016), and Zianis et al. 
(2016) to a forest area managed by the XFS. 
The Manolis et al. (2016) model, approximating 
biomass with a biomass expansion factor (BEF) 
of 3.2, emerged as the most accurate for our 
assessment. This can be attributed to its ability 
to account for the youthful vigor of the stands, 
which is consistent with the structure of the 
forests within our study area.

An interesting observation from our study was 
that only 4 out of 48 sampling points represented 
high-volume stands, each exceeding 400 m³/ha 
(Sampling Points: 8, 35, 55, and 60). These high-
volume stands exhibited significant deviation 
between the biomass estimates of different 
models. Conversely, in low-volume stands, the 
deviation between the models was considerably 
smaller. For these stands, the biomass estimates 
showed greater consistency, reflecting the 

homogeneity in their structure.

These insights underscore the necessity of 
selecting and applying the appropriate allometric 
models based on forest structure and growth stage. 
Failure to do so can lead to significant errors in 
biomass estimation, particularly in heterogeneous 
forest landscapes like those managed by the XFS. 
Models by Zianis et al. (2016) and Ganatsas et al. 
(2022) are calibrated more towards the biomass 
estimation of mature stands and, therefore, fall 
short in our case. 

Primary productivity is integral to forest 
ecosystems, as it encapsulates the photosynthetic 
activity of plants, which is instrumental in biomass 
accumulation. This process forms the cornerstone 
for the net primary productivity (NPP) of a forest 
by reducing gross photosynthetic carbon capture 
by the energy expended in autotrophic respiration 
and losses due to plant tissue mortality (Chapin 
et al., 2011). NPP thus becomes a critical driver 
of organic carbon accrual in forest ecosystems, 
marking the difference between the amount of 
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carbon assimilated through photosynthesis and 
that used or lost in respiration and decay processes 
(Clark et al., 2001).

The distribution of trees across various DBH 
classes is a fundamental component influencing 
NPP and, consequently, aboveground biomass. 
Forest structure encompasses various aspects 
such as tree density, size, age distribution, species 
composition, and the spatial arrangement of trees. 
A commonly used structural parameter is the 
distribution of trees among DBH classes, revealing 
productivity patterns across forest growth stages 
(Ryan et al., 2004; Stephenson et al., 2014). In 
young stands, characterized by a greater number 
of small-diameter trees, active growth and high 
NPP are evident. As forests age, the distribution 
typically shifts towards fewer larger-diameter 
trees, signifying a mature forest where NPP may 
level off or decrease as biomass accumulation 
slows (Odum, 1969; Luyssaert et al., 2007).

Our study area, dominated by young forests, 
showed rapid biomass accrual, making it apt 
to apply a BEF near the upper end of the range 
(Jenkins et al., 2003). In contrast, in mature 
forests with a more scattered distribution of 
large-diameter trees, a lower BEF might be 
more appropriate (Luyssaert et al., 2007). This 
is evident from our high-volume stands where 
the selected models showed larger deviations, 
indicating that the models suited for younger 
forests provided more accurate estimates.

Accurately gauging forest biomass requires 
an understanding of both NPP and the forest’s 
structural dynamics, particularly when considering 
how the distribution of trees across DBH classes 
can reflect the growth phase and productivity of 
the forest. BEFs must be tailored to the specific 
structure of each forest—acknowledging that 
early-growth, dense stands rich in smaller DBH 
classes are structurally different from older, more 
evenly distributed stands with larger DBH trees. 
The tailored application of BEFs, based on forest 
structure, is not merely a theoretical exercise; it 
embodies a critical decision with tangible impacts 
on carbon budgeting and the assessment of a 
forest’s ecological status and conservation value. 
It implicates management strategies, sustainability 

considerations, and carbon accounting practices 
within the framework of global efforts to mitigate 
climate change (Canadell & Raupach, 2008).

Conclusion

This research aimed to identify the most 
appropriate model for predicting forest biomass 
in the oak-dominated ecosystems within the 
Xanthi region, using established models as 
benchmarks. Besides the relevance of a model 
to another study region and focal species, the 
structure of the studied forest plays a crucial 
role in biomass estimation. Our study area is 
characterized by young stands with a majority 
of smaller diameter trees, indicating high net 
primary productivity (NPP). Such characteristics 
necessitate the application of a BEF closer to 
the higher end of its range, which is suitable 
for young, actively growing stands (Penman et 
al., 2003). A comparison of allometric models, 
therefore, favors the use of the model proposed 
by Manolis et al. (2016).

Consistent with the tiered approach for model 
selection advocated by the IPCC, our analysis 
underscores the necessity of matching allometric 
models to the forest's structural attributes to 
ensure accurate biomass estimates. The suitability 
of the model of Manolis et al. (2016) for young 
stands implies that our study area possesses 
considerable potential for future biomass yield 
and carbon sequestration. This has significant 
implications for sustainable forest management, 
wherein accurate biomass estimates are crucial 
for formulating strategies that enhance the carbon 
storage potential of forests and contribute to 
climate change mitigation.
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