Academic Voices A Multidisciplinary Journal Volume10, No. 1, 2020 ISSN: 2091-1106

ON Φ-RECURRENT LORENTZIAN α-SASAKIAN MANIFOLD WITH SEMI SYMMETRIC NON METRIC CONNECTION

Kripa Sindhu Prasad

Department of Mathematics, TU, Thakur Ram Multiple Campus, Birgunj, Nepal Email: kripasindhuchaudhary@gmail.com

Abstract

The present work deals with the study of Φ -recurrent Lorentzian α -Sasakian manifold with semi-symmetric non metric connection.

Keywords and Phrases

Locally Φ -symmetric manifold Φ -recurrent Lorentzian α -Sasakian manifold; η - Einstein manifold

Introduction

The notion of local symmetry of a Riemannian manifold has been studied by many authors in several ways to a different extent. In 1977, Taka hasi [9] introduced the notion of locally Φ-symmetric Sasakian manifold and obtained their several interesting results. Generalizing the notion of Φ-symmetry, De, U.C [4] introduced the notion of Φ-recurrent Sasakian manifold.

Fridmann and Schouten introduced the idea of semi-symmetric linear connection on a differentiable manifold. Hayden introduced the idea of metric connection with torsion on Riemannian manifold. Yano [8], Golab [5] defined and studied semi-symmetric and quarter symmetric connection with affine connection. Further many authors like De, U.C. [1], Sharfudin and Hussain [3], Rastogi, Mishra and Pandey, Bagewadi and many others studied the various properties of semi-symmetric connection.

In this paper we study Φ -recurrent Lorentzian α -Sasakian manifold with semi-symmetric non metric connection and proved that a Φ -recurrent Lorentzian α -Sasakian manifold with symmetric

non metric connection is a η - Einstein manifold. Further we show that in Φ -recurrent Lorentzian α -Sasakian manifold with semi-symmetric non metric connection, the characteristic vector ξ and vector field η associated to the 1- form A are co-directional.

Preliminaries: A differentiable manifold M of dimension n is called a Lorentzian α sasakian manifold of it admints a tensor field Φ of type (1,1), the characteristic vector ξ , a covariant vector field η and lorentzian metric g which satisfy

$$\begin{split} & \Phi^2 \! = 1 \! + \eta \otimes \xi \\ & \eta(\xi) = -1 \\ & g(\Phi X, \Phi Y) = g(X,Y) + \eta(X) \, \eta(Y) \\ & g(X,\xi) = \eta(X) \end{split} \tag{2.1}$$

$$\frac{g(X, \S)}{g(X)} = \frac{g(X, \S)}{g(X, \S)}$$

$$\Phi \xi = 0, \, \eta(\Phi X) = 0 \tag{2.5}$$

$$(\mathbf{D}_{\mathbf{X}}\Phi)\mathbf{Y} = \alpha \ \mathbf{g}(\mathbf{X}, \mathbf{Y}) \ \xi - \alpha \ \eta(\mathbf{Y}) \ \mathbf{X}$$
 (2.6)

For all $X, Y \in Tm [2, 3, 13]$

Also a lorentzian α sasakian manifold m satisfies

$$(\mathbf{D}_{\mathbf{x}}\xi)\mathbf{Y} = \alpha \,\Phi \,\mathbf{X} \tag{2.7}$$

$$(D_x \eta) Y = -\alpha g(\Phi X, Y) \tag{2.8}$$

Where D denotes the operator of covariant differentiation with respect to lorentzian matric g.

Also on a Lorentzian α sasakian manifold, the following hold [2, 3, 13]

$$R(X, Y) \xi = \alpha^2 (\eta(Y) X - \eta(X) Y)$$
 (2.9)

$$R(\xi, X) Y = \alpha^{2}(g(X, Y) \xi - \eta(Y) X)$$
 (2.10)

$$R(\xi, X) \xi = \alpha^{2} (\eta(X) \xi + X)$$
 (2.11)

$$S(X, \xi) = (n-1) \alpha^2 \eta(X)$$
 (2.12)

$$\eta(R(X, Y)Z) = \alpha^{2}(g(Y, Z) \eta(X) - g(X, Z) \eta(Y))$$
 (2.13)

$$g(R(\xi, X)Y, \xi) = -\alpha^2 [g(X,Y) + \eta(X) \eta(Y)]$$
 (2.14)

For any vector field X, Y, Z where S is the Ricci curvature and Q is the Ricci operation given by

$$S(X, Y) = g(\Phi X, Y)$$

A lorentzian α sasakian manifold is said to be η - Einstein manifold if its Ricci tensor S takes the form

$$S(X, Y) = a g(X, Y) + b \eta(X) \eta(Y)$$

For arbitrary vector X, Y where a and b are function on M. If b=0 the η - Einstein manifold becomes Einstein manifold. [3, 9] have proved that if Lorentzian α sasakian manifold M is η - Einstein manifold then a + b = $-\alpha^2$ (n-1).

Definition 2.1: A Lorentzian α sasakain manifold is said to be locally Φ - symmetric if

$$\Phi^{2}((D_{w}R)(X, Y)Z) = 0$$
 (2.15)

Definition: 2.2

A Lorentzian α sasakian manifold is said to be recurrent if there exists a non zero 1-form A such that

$$\Phi^{2}((D_{W}R)(X, Y)Z) = A(W)R(X, Y)Z,$$
 (2.16)

Where A (W) is defined by A (W) = $g(W, \rho)$ and ρ is a vector field associated with 1- from.

Lorentzian α sasakian manifold with semi symmetric non metric connection:

A semi symmetric connection \overline{D} in Lorentzian α sasakian manifold can be defined by

$$\overline{D}_{\mathbf{x}}Y = D_{\mathbf{x}}Y + \eta(Y)X \tag{3.1}$$

Also we have
$$(\overline{D}_{x}g)(Y,Z) = -\eta(Y)g(Y,Z) - \eta(Z)g(Y,X)$$
 (3.2)

A connection given by (3.1) with (3.2) is called semi symmetric non metric connection in Lorentzain α sasakian manifold.

A relation between curvature tensor M of the manifold with semi metric connection non metric connection $\overline{\mathbf{p}}$ and Levi- Civita connection D is given by

$$\overline{\mathbf{R}}(\mathbf{X}, \mathbf{Y})\mathbf{Z} = \mathbf{R}(\mathbf{X}, \mathbf{Y}) \mathbf{Z} - \alpha \mathbf{g}(\mathbf{\Phi}\mathbf{X}, \mathbf{Z})\mathbf{Y} - \alpha \mathbf{g}(\mathbf{\Phi}\mathbf{Y}, \mathbf{Z})\mathbf{X}$$
(3.3)

Where \overline{R} and R are the Riemannian curvature of the connections \overline{D} and D respectively.

From (3.3), we have
$$\overline{S}(Y, Z) = S(Y, Z) + \alpha(n-1) g(\Phi Y, Z)$$
 (3.4)

Where \overline{S} and S are the Ricci tensor of the connections \overline{D} and D respectively.

Contracting (3.4), we get
$$\bar{\mathbf{r}} = \mathbf{r}$$
 (3.5)

Where $\bar{\mathbf{r}}$ and r are the scalar curvatures of the connections $\overline{\mathbf{D}}$ and D respectively.

Academic Voices Vol. 10, No. 1, 2020

Φ - recurrent Lorentzian α sasakian manifold with semi symmetric non metric connection.

A analogous to the definition (2.2) we define a Lorentzian α sasakian manifold is said to be Φ - recurrent with respect to semi symmetric non metric connection if its curvature tensor $\overline{\mathbf{R}}$ satisfies the following condition

$$\Phi^{2}(D_{w}\overline{R})(X,Y)Z) = A(W)\overline{R}A(W)\overline{R}(X,Y)Z$$
(4.1)

Using (2.1) in (4.1), we get

$$(\overline{D}_{\mathbf{w}}\overline{\mathbf{R}})(\mathbf{X},\mathbf{Y})\mathbf{Z} + \eta(((\overline{D}_{\mathbf{w}}\overline{\mathbf{R}})(\mathbf{X},\mathbf{Y})\mathbf{Z})\xi = \mathbf{A}(\mathbf{W})\overline{\mathbf{R}}(\mathbf{X},\mathbf{Y})\mathbf{Z}$$
(4.2)

From which it follows that

$$g((\overline{D}_{\mathbf{w}}\overline{\mathbf{R}})(\mathbf{X},\mathbf{Y})\mathbf{Z},\mathbf{U}) + \eta(((\overline{D}_{\mathbf{w}}\overline{\mathbf{R}})(\mathbf{X},\mathbf{Y})\mathbf{Z})\mathbf{g}(\xi,\mathbf{U}) = \mathbf{A}(\mathbf{W})\mathbf{g}(\overline{\mathbf{R}}(\mathbf{X},\mathbf{Y})\mathbf{Z},\mathbf{U}) \quad (4.3)$$

Let $\{e_i\}$, i=1,2,3,... n be an orthonormal basis of the tangent space at any point of the manifold. Then putting $X=U=\{e_i\}$ in (4.3) and taking summation over $i,1\leq i\leq n$, we get

$$(\overline{D}_{\mathbf{w}}\overline{S})(Y,Z) + \eta(((\overline{D}_{\mathbf{w}}\overline{R})(e_{i},Y)Z)\eta(e_{i}) = A(W)\overline{S}(Y,Z)$$
(4.4)

Putting $Z = \xi$, in (4.4), the second term of (4.4) takes the form

 $g(((\overline{D}_w\overline{R})(~e_i,~Y)~\xi~,~\xi)~which~on~simplification~gives~g(((\overline{D}_w\overline{R})(~e_i,~Y)~\xi~,~\xi)=0~$ Then from (4.4) we obtain

$$(\overline{D}_{\mathbf{W}}\overline{S})(Y,\xi) = A(W)\overline{S}(Y,\xi)$$
 (4.5)

Now we know that

$$(\overline{D}_{\mathbf{w}}\overline{S})(Y,\xi) = \overline{D}_{\mathbf{w}}\overline{S}(Y,\xi) - \overline{S}(\overline{D}_{\mathbf{w}}Y,\xi) - \overline{S}(Y,\overline{D}_{\mathbf{w}}\xi)$$
(4.6)

Using (2.7), (2.8), (2.12), (3.4) in (4.6), we get

$$\begin{split} &(\overline{D}_{\mathbf{w}}\overline{S}\,)\,(Y,\,\xi) = \alpha S(Y,\,\Phi W) + S(Y,\,W) - \alpha(\alpha+1)\,(n\text{-}1)\,g(Y,\,\Phi W) - \alpha^2(n\,\text{-}1)\,g(Y,W) + \\ &\alpha^2(n\,\text{-}1)\,g(\Phi Y,\,\Phi W) \end{split} \tag{4.7}$$

In view of (4.5) and (4.7), we get

$$\begin{split} &\alpha S\left(Y,\Phi W\right) + S(Y,W) - \alpha(\alpha+1)(n-1)g(Y,\Phi W) - \alpha^{2}(n-1)g(Y,W) + \alpha^{2}(n-1)\;g(\Phi Y,W) \\ &\Phi W) = \; \alpha^{2}(n-1)\;A(W)\;\eta(Y) \end{split}$$

Replacing $Y = \Phi Y$ in above equation, we get

Interchanging Y and W in (4.8) we get

Adding (4.8) and (4.9) and simplifying we get

$$S(\Phi Y, \Phi W) = (\alpha^2 + 1)(n-1)g(\Phi Y, \Phi W)$$

Using (2.3) and (2.15), we get

$$S(Y, W) = (\alpha^2 + 1)(n-1)g(Y, W) + (n-1)\eta(Y)\eta(W)$$

This leads to the following theorem.

Theorem 4.1: A Φ - recurrent Lorentzian α sasakian manifold with semi symmetric non metric connection is η - Einstein manifold.

Again from (4.2), we have

$$(\overline{D}_{\mathbf{w}}\overline{\mathbf{R}})(\mathbf{X},\mathbf{Y})\mathbf{Z} = -\eta(((\overline{D}_{\mathbf{w}}\overline{\mathbf{R}})(\mathbf{X},\mathbf{Y})\mathbf{Z})\,\boldsymbol{\xi} + \mathbf{A}(\mathbf{W})\,\overline{\mathbf{R}}(\mathbf{X},\mathbf{Y}) \tag{4.10}$$

From (2.13), (3.3) and using Bainchi identity we get

$$A(W) \eta(\overline{R})(X, Y)Z) + A(X) \eta(\overline{R}(Y, W)Z) + A(Y) \eta(\overline{R}(W, X)Z) = 0$$
(4.11)

From (2.13), (3.3) in (4.11) we get

$$A\;(W)\;\alpha^{2}[g(Y,\,Z)\;\eta(X)\;\text{-}\;g(X,\,Z)\;\eta(Y)]\;+\;A(X)\;\alpha^{2}[g(Z,\,W)\;\eta(Y)\;\text{-}\;g(Y,\,Z)\;\eta(W)]\;+\;$$

$$\begin{split} &A(W)\;)\;\alpha^{2}[g(X,W\;)\;\eta(Z)\text{ - }g(Z,\,W)\;\eta(X)] + \alpha[g(\Phi Y,\,Z)\;\eta(X)\text{ - }g(\Phi X,\,Z)\;\eta(Y)\text{ + }\\ &g(\Phi W,\,Z)\;\eta(Y)\text{ - }g(\Phi Y,\,Z)\;\eta(W)\text{ + }g(\Phi X,\,Z)\;\eta(W)\text{ - }g(\Phi W,\,Z)\;\eta(X)] = 0 \end{split} \tag{4.12}$$

Putting
$$Y=Z=e_i$$
 in (4.12) and taking summation over i, $1\leq i\leq n$, we get
$$A(W)\,\eta(X)=A(X)\,\eta(W) \eqno(4.13)$$

For all vector fields, W. Replacing X by ξ in (4.13), we get

$$A(W) = -\eta(\rho)\eta(W) \tag{4.14}$$

For any vector field W, where $A(\xi)=g(\xi,\,\rho)=\eta\,\left(\rho\right)$, ρ being vector field associated to the

1-form A that is $g(X, \rho) = A(X)$

Academic Voices Vol.10, No. 1, 2020

From (4.13) and (4.14) we state that following.

Theorem 4.2: In a Φ - recurrent Lorentzian α sasakian manifold with semi symmetric non metric connection the characteristic vector $\boldsymbol{\xi}$ and vector field $\boldsymbol{\rho}$ associated to the 1- form A are codirectional and 1- form A is given by (4.14).

References:

- [1] De, U.C On a type of semi symmetric metric connection on Riemannian manifold. Indian J. Pare Appl. Math. 21(4) (1990), 334-338.
- [2] A. Yildiz, and C.Murathan, On Lorentzian α Sasakian manifolds, Kyungpook Math. J. Vol - 45(2005), 95-103.
- [3] A. Sharfuddin and Hussain, S.I, semi symmetric metric connection in almost contact manifold, Tensor, vol 30(2), (1976), 133-139.
- [4] De, U.C. Shaikh, A.A and Biswas,
 S. , On Φ recurrent Sasakian manifolds, Novi sad J. Math, 33(2), (2003), 43-48.
- [5] Golab. S, On semi symmetric and quarter symmetric linear connections, Tensor, vol(29)3,(1975), 249-254.

- [6] Srivastava S.K. and Prakash A. On concircularly Φ- recurrent Sasakian manifolds , globle J. of Pure and Applied Mathematics, 9(2) (2013), 215-220.
- [7] Taleshin. and Asghari. N, On Lorentzian α-Sasakian manifolds, the J of Mathematics and Computer science. vol 14(3), (2012), 295-300.
- [8] Yano. K, On semi symmetric metric connection, Reveu Roumine de Mathematiques Pures et, vol 15 (1970), 1579-1586.
- [9] Takahashi. T, Sasakian Φ- symmetric spaces. Tohoku math, J. 29(1977) , 91-113.