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INTRODUCTION

The versatility of nanomaterials and the role of the 
protein corona (PC)
The remarkable versatility of  nanomaterials has driven their 
development for a wide array of  biomedical applications, 
including drug delivery, precision medicine, vaccines, 
molecular imaging, and bio-detection.1 When nanoparticles 
are introduced into a biological system, a biomolecular 
corona forms on their surface. This corona is a dynamic 
layer resulting from the interaction of  proteins and other 

biomolecules with the nanoparticle surface. Its formation 
is influenced by multiple factors, such as the concentration 
of  proteins and nanoparticles, the affinity and structure 
of  proteins, and the physicochemical properties of  the 
nanoparticles. This dynamic layer, in turn, profoundly 
impacts immune recognition, biodistribution, receptor 
interactions, and the local and systemic toxicity of  the 
nanoparticles.2-4

The role of  proteins in forming the surface layer of  
the corona is particularly critical. Proteins dominate the 
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adsorption process, effectively preventing the binding of  
other biomolecules to some extent.2 Consequently, most 
studies focus on the PC. Importantly, the PC is not a 
static entity. Some proteins bind reversibly, forming what 
is termed the “soft” corona, while others form stronger, 
more stable complexes, constituting the “hard” corona.5,6

For the successful clinical translation of  nanoparticle-based 
drug delivery systems, it is essential to understand both the 
initial formation of  the corona and the dynamic changes 
it undergoes as the nanoparticle traverses the biological 
environment. However, traditional proteomic methods 
used to identify the PC, such as liquid chromatography-
tandem mass spectrometry (LC-MS/MS), are limited by 
low throughput, high costs, and the need for highly skilled 
personnel.5,7,8

Objective of this work
This review aims to provide a concise overview of  
advancements in the use of  ML for PC analysis over 
the past decade. It examines key findings, highlights the 
challenges faced, and explores the potential of  ML to 
revolutionize our understanding and application of  PC 
dynamics. What are the critical insights and obstacles in 
leveraging ML for PC analysis? This work seeks to address 
these questions while shedding light on future directions 
in this rapidly evolving field.

RESULTS

Machine learning (ML) as a solution
ML offers a promising approach to overcoming the 
limitations of  traditional proteomic methods. ML is a 
computational technique that does not rely on explicit 
programming to achieve specific outcomes. Instead, it 
learns from existing data to generalize patterns and predict 
outcomes for previously unseen data. In the context of  PC 
analysis, ML models can be trained on datasets comprising 
previously characterized PC s on specific nanoparticles. 
This enables the development of  predictive models that 
emulate the decision-making and information-gathering 
processes observed in biological systems.9

10 years of ML in PC research
In 2014, Walkey et al., successfully demonstrated that 
the PC fingerprint (PCF) provides a more accurate 
prediction of  cell association than the physicochemical 
properties of  nanomaterials.10 They synthesized gold 
(AuNPs) and silver nanoparticles (AgNPs) and observed 
that the core material of  the nanoparticles significantly 
affects the composition of  the PC. Notably, only 36.9% 
of  the serum PC formed around silver nanoparticles 
overlapped with that of  gold nanoparticles modified 

with the same surface ligand. The study highlighted that 
the specific identities and abundances of  proteins within 
the corona, rather than the total amount of  adsorbed 
protein, play a critical role in determining nanoparticle-
cell interactions.

Validation results revealed that a model trained on gold 
nanoparticles failed to accurately predict the cell association 
of  silver nanoparticles, indicating that the relationship 
between the PC and cell association is highly dependent on 
the nanoparticle core material. Although a combined model 
incorporating both gold and silver nanoparticles showed 
a slight improvement in prediction accuracy, the overall 
performance remained low. Conversely, a model trained 
exclusively on silver nanoparticles accurately predicted 
their cell association, leading the authors to conclude that 
separate models may be required for different nanoparticle 
classes based on their PCF.

Furthermore, while the study identified 785 serum proteins 
within the PC, only 129 high-abundance proteins were 
included in defining the protein fingerprint, with 656 low-
abundance proteins excluded. These excluded proteins, 
although not utilized in the model, could still influence cell 
association or other biological interactions.

Liu et al., further advanced this work by developing 
a model to identify specific serum proteins in the PC 
that are most relevant for predicting nanoparticle (NP) 
cell association.11 To enhance prediction accuracy and 
minimize overfitting, the model incorporated only the most 
significant parameters. The dataset included 84 gold NPs 
(AuNPs) from Walkey et al., library of  105 NPs, excluding 
21 NPs due to negligible protein adsorption. In addition, 
129 PCFs were omitted due to insufficient data.

Among the descriptors analyzed, apolipoprotein B 
(APOB) emerged as the most frequently selected and 
had the greatest impact on the correlation with AuNP 
cell association. The study also addressed limitations 
in validation methodologies, noting that leave-one-out 
cross-validation (Q²LOO), which had been used in earlier 
research, can yield overly optimistic estimates of  prediction 
accuracy, especially for small datasets.

Papa et al., conducted a comparative study to evaluate 
multiple ML models and identify the most effective 
approach for PC research.18 External validation was 
performed by dividing the original dataset into training 
and prediction sets, ensuring that the models’ predictive 
performance was assessed within a representative domain 
for gold NPs (Au-NPs). Key innovations in this study 
included the direct use of  spectral counts of  high-
abundance serum proteins as experimental descriptors 
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and a comparative analysis of  linear versus non-linear 
techniques. This methodology provided valuable insights 
into the strengths and limitations of  various ML-based 
approaches, offering alternatives to previously established 
models.

The study identified six critical descriptors for modeling 
cell association: the hydrodynamic diameter of  Au-
NPs after serum exposure, which correlated positively 
with increased cell association, and the spectral counts 
of  five proteins-Alpha 1 Antitrypsin (A1AT), CO4B 
(Complement C4B), KNG1 (Kininogen-1), VNTC 
(Vitronectin), and glial fibrillary acidic protein (GFAP). 
Among these, A1AT, VNTC, and CO4B were found to 
enhance cell association, while KNG1 and GFAP served 
as inhibitors. Importantly, the roles of  A1AT (promoter) 
and KNG1 (inhibitor) were consistent with prior studies, 
reinforcing their significance.

Projection pursuit regression, enhanced adaptive regression 
through hinges, and random forest (RF) emerged as the 
top-performing ML techniques in this analysis. Conversely, 
previously developed models by Walkey et al., and Liu et al., 
demonstrated inferior performance. This comprehensive 
evaluation emphasized the critical importance of  selecting 
ML models suited to the specific characteristics of  datasets 
and research objectives in PC investigations.

Helma et al., explored the optimal combination of  
descriptors and ML algorithms for predicting NP 
associations, contributing to the field of  nanomaterial 
informatics.19 Utilizing the eNanoMapper online database, 
they determined that combining PC descriptors with 
a weighted RF algorithm produced the best results, as 
measured by root mean square error (RMSE) and R² 
metrics. To ensure reproducibility, the study provided 
a publicly available, self-contained Docker image that 
included all necessary software and data.

However, the study acknowledged certain limitations. 
Since cross-validation folds were generated randomly, 
replication of  the validations might not yield identical 
results. In addition, comparing the findings with other 
published models was challenging due to differences in 
datasets, validation protocols, and performance metrics. 
For instance, some studies applied global models to subsets 
of  the PC dataset and performed feature selection on 
the entire dataset before validation, complicating direct 
comparisons.

Advancements in PC prediction and their biological 
ımplications
To date, research has largely focused on the relationship 
between the PCF and nanomaterial-cell associations, 

but the analysis of  these fingerprints has relied on low-
throughput methods. Findlay et al., made a significant 
advance by developing a RF model capable of  predicting 
which proteins would adsorb onto a NP surface, thereby 
enabling the prediction of  the PCF itself.12

The model utilized a balanced dataset that incorporated 
logarithmic enrichment factors and various protein 
properties. However, compared to protein features, 
engineered nanomaterial (ENM) and solvent properties 
were underrepresented in the training features. This 
imbalance arose because variations in ENM and solvent 
properties are challenging to study, as investigating new 
ENMs or reaction conditions requires fresh protein-ENM 
reactions and proteomics analyses. In addition, key factors 
potentially influencing PC formation – such as protein-
protein interactions, ENM surface coating exchanges, and 
unmeasured variables, such as ENM shape – were excluded 
from the dataset. ENMs with hydrophobic coatings were 
also omitted due to solubility issues, limiting the model’s 
capacity to evaluate hydrophobicity.

The study observed a strong emphasis on protein 
biophysical characteristics over ENM and solvent 
characteristics, consistent with earlier findings by Walkey 
et al., Within the protein feature set, factors such as the 
percentage of  hydrophilic and aromatic amino acids and 
cysteine content were highly influential, with cysteine 
content alone contributing nearly 25%. However, the 
limited representation of  ENM and solvent properties in 
the dataset restricted the ability to draw robust conclusions 
about their relative importance. Expanding the database 
to include a broader range of  ENM and solvent features, 
including hydrophobic ENMs, would improve the 
model’s applicability and robustness, enabling a more 
comprehensive understanding of  PC formation drivers.

Lazarovits et al., were the first to employ PCF in an in vivo 
study, utilizing a neural network to predict the organ 
accumulation and clearance of  gold NPs (AuNPs) in rats.13 
To ensure AuNP stability in blood and extended circulation 
times for effective isolation and analysis, the NP surfaces 
were saturated with polyethylene glycol. Their experiments 
identified five-time points as optimal for achieving the 
highest prediction accuracy in the neural network model.

The study found that protein patterns, rather than 
individual proteins, dictated the clearance of  NPs from 
circulation, highlighting the role of  the body in altering 
NP surface chemistry. AuNPs with extended circulation 
times avoided clearance due to the absence of  specific 
protein combinations required for uptake by the liver and 
spleen. Notably, these protein combinations could not be 
artificially replicated, underscoring the value of  the model. 
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ML elucidated this clearance mechanism while leveraging 
the body as a bioreactor to develop NP surface chemistries 
that evade liver and spleen uptake.

In addition, the researchers noted that NPs of  a specific 
size represent a Gaussian distribution, with the reported 
size reflecting the mean. NPs with closely related mean sizes 
may share overlapping protein profiles, leading to similar 
biodistributions and limiting statistical differentiation. 
Improving training and prediction accuracy would require 
NP synthesis with sub-nanometer standard deviations – a 
challenge under current bulk synthesis methods.

Duan et al., introduced a RF model incorporating a novel 
descriptor, fluorescence change (FC), for predicting the 
PCF.14 This approach was tested on a diverse range of  
ENMs, including metals, metal oxides, nanocellulose, and 
2D materials, demonstrating its broad applicability.

A high-throughput fluorescamine labeling method, which 
eliminated the need for washing steps, was employed to 
generate the FC descriptor. Traditional physicochemical 
properties such as hydrodynamic diameter and zeta 
potential were used as benchmarks for comparison, with 
FC outperforming these descriptors. The physicochemical 
properties of  proteins identified in the corona, including 
molecular weight, isoelectric point, GRAVY score, and 
amino acid composition, were calculated using ProtParam 
to supplement the analysis.

A significant finding, consistent with Walkey et al., was the 
material-dependent performance of  the model.10 Prediction 
accuracy improved when the training set included ENMs 
with properties similar to those in the test set. For instance, 
using cellulose and spherical ENMs in the training set 
reduced model accuracy, suggesting that the model’s 
applicability domain may be constrained by ENM shape.

Ban et al., compiled the largest database to date for PC 
research through an extensive literature review.15 Using 
this dataset, they developed a RF model to predict the 
composition of  the PC layer and its impact on cellular 
recognition. However, the model’s performance was 
inconsistent; while it successfully predicted the presence 
of  certain proteins on NP surfaces, accuracy varied 
across different cases. These inconsistencies aligned with 
previous reports by Duan et al.,14 and Walkey et al.,10 which 
highlighted the challenges of  creating generalized models 
capable of  handling diverse ENM types.

The variability in physicochemical properties and 
interactions across different nanomaterials likely contributed 
to Ban et al., model inconsistencies. This underscores the 
significant challenge in developing universal predictive 

models for PC composition and its biological implications. 
Future efforts should focus on expanding datasets to 
capture the diversity of  ENM properties and interactions, 
thereby enhancing model generalizability and reliability.

Innovative approaches to predicting PC formation 
using ML
Yan et al., proposed a groundbreaking approach to 
nanomaterial annotation, inspired by facial recognition 
technology, to improve the predictive modeling of  protein 
adsorption on NPs.16 This method transformed three-
dimensional nanostructure data into image formats suitable 
for convolutional neural network (CNN) analysis. Using a 
custom program named “ViNAS,” they processed data from 
147 NPs (36 for protein adsorption and 77 for cellular uptake) 
into standardized images through Visual Molecular Dynamics 
software. Written in a tool command language, the program 
streamlined the conversion process, ensuring high efficiency.

The study utilized a CNN model trained on nanostructure 
images that integrated features such as core material, size, 
surface ligand chemistry, and density, bypassing traditional 
descriptors, such as zeta potential and ligand properties. The 
model achieved strong performance, with R² values exceeding 
0.68 for both 5-fold cross-validation and external validation, 
outperforming conventional physicochemical predictors. 
Validation methods, including cross-validation, external 
testing, and Y-scrambling, confirmed the model’s robustness.

The reliance on image-based nanostructure representations 
underscores the potential of  this approach to circumvent 
traditional experimental measurements, opening a promising 
avenue for innovative applications in nanotechnology.

Quassil et al., explored factors influencing protein binding to 
single-walled carbon nanotubes (SWCNTs) and developed 
a RF model to predict the end-state PC composition.17 
Their findings revealed that proteins with high solvent-
exposed glycine residues or amino acids lacking secondary 
structures (e.g., alpha helices or beta sheets) were more 
likely to bind to the curved SWCNT surface, suggesting 
that structural flexibility enhances binding. Conversely, 
proteins rich in leucine or amino acids associated with 
planar beta-sheet domains exhibited weaker binding, 
indicating that structural rigidity impedes interactions. The 
GRAVY score (grand average hydropathy) also emerged 
as a key determinant, with lower scores correlating with a 
reduced likelihood of  PC formation (Figure 1).

The study focused on predicting the final PC composition 
rather than the dynamic stages of  corona formation. 
Although the model accurately predicted the end-state 
binding, it struggled to capture intermediate protein 
adsorption dynamics, resulting in a poor correlation 
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Figure 1: Schematic representation of machine learning development based on protein corona analysis using liquid chromatography-tandem 
mass spectrometry. (Reproduced with permission)17,23

Figure 2: Descriptors by Ban et al., with permission.15 Bio interactions

between predicted and experimentally observed temporal 
protein-SWCNT interactions. Despite these limitations, 
the RF classifier provided valuable insights into the 
physicochemical factors influencing protein-nanotube 
interactions, offering a promising tool for predicting corona 
formation across diverse NP systems (Figure 2).

In 2024, Liao et al., addressed imbalanced data distributions 
in predicting PC composition, emphasizing the importance 
of  data quality in enhancing model performance.20 While 
prior studies focused on predictive models, Liao et al., 
employed resampling techniques to balance dense and 
sparse data distributions, significantly improving prediction 
accuracy.

Three resampling strategies were implemented: Random 
Oversampling, Synthetic Minority Oversampling Technique 
for Regression, and the Weighted Relevance-based 
Combination Strategy. These methods improved dataset 
distribution, increasing R² by 0.06 and reducing RMSE 
by 0.11. However, the model performed less effectively 
for proteins with low relative protein abundance (RPA), 
a limitation attributed to competitive adsorption effects. 
These findings underscore the critical role of  resampling 
in addressing data imbalance and improving the predictive 
accuracy of  PC models.

Finally, Fu et al., conducted a comprehensive study to 
predict the RPA of  multiple proteins within the PC using 
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Figure 3: Key findings from 10 years of machine learning in protein corona research

ML models (Figure 3).21 This research uniquely combined 
classification and regression tasks to evaluate algorithmic 
performance and identify key features influencing RPA 
through interpretable analysis. It represents a pioneering 
effort to provide interpretable predictions for the RPA of  
multiple proteins in the PC.

The Extremely Randomized Trees (ERT) algorithm excelled 
in binary classification tasks, accurately predicting whether 
a protein adsorbs onto a NP. For regression tasks, RF 
achieved the highest R² performance, while ERT minimized 
RMSE, demonstrating complementary strengths across 
different tasks. Feature importance analysis identified 
the NP core material as the most significant determinant 
of  protein adsorption. In addition, centrifugation speed 
emerged as a critical factor in determining the relative 
abundance of  adsorbed proteins. These results provide 
valuable insights into the physicochemical parameters 
driving PC formation and highlight the potential of  ML 
to unravel complex nano

DICUSSION

The importance of predicting PC formation in 
nanotechnology
The ability to accurately predict PC formation is critical 
for understanding cellular responses, assessing local and 

environmental toxicity, and optimizing the functionality 
of  nanotechnologies. Although ML has significantly 
enhanced predictive efficiency in this domain, further 
research and expanded datasets are essential to address 
existing challenges.

Current challenges in ML for PC research
1. Material-specific limitations in predictive models
 Developing a universal predictive model for diverse 

NPs remains a significant challenge due to the 
material-specific nature of  PC formation. Walkey et al., 
demonstrated that the core material of  NPs (e.g., gold 
vs. silver) strongly influences PC composition, with 
minimal overlap observed between similar NPs.10 Their 
findings revealed that models trained on one NP type 
often fail to predict cell associations for other types, 
underscoring the dependency on NP material.

 Similarly, the model developed by Ban et al., faced 
inconsistent performance, despite leveraging a diverse 
dataset comprising various ENMs.17 This variability 
reflects the differences in physicochemical properties 
and interactions among ENMs, complicating the 
creation of  generalized models. Duan et al., further 
highlighted the issue, showing reduced model 
accuracy when training and test datasets involved 
NPs with differing shapes or properties.14 These 
findings collectively emphasize the necessity of  
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tailored or hybrid modeling approaches to address the 
heterogeneity of  NP types (Table 1).

2. Variability in performance metrics
 The use of  inconsistent performance metrics in PC 

ML studies hinders direct comparisons across research. 
Liu et al., critiqued the reliance on leave-one-out 
cross-validation, noting its tendency to produce overly 
optimistic accuracy estimates, particularly for small 
datasets.11 This metric evaluates model performance 
using subsets of  data that may not be sufficiently 
independent from the training set, increasing the risk 
of  overfitting (Table 2).

3. Dependence on secondary data sources
 Many researchers rely on data from published studies 

rather than conducting independent NP synthesis 
or purchasing materials from established suppliers. 
This approach, driven by the complexity and expense 
of  generating new datasets, is exemplified by Ban 
et al., who compiled the largest PC database to 
date by aggregating literature data.15 Similarly, Yan 
et al., converted data from 147 NPs into image-based 
formats for CNN analysis.16

 While leveraging existing datasets reduces the time and 
resources required, it also introduces challenges such as 
dataset inconsistencies, reporting biases, and a lack of  
standardization. These issues can compromise model 
reliability and generalizability, underscoring the need 
for transparent reporting and harmonized protocols 
to enable robust model development and meaningful 
comparisons.

4. Variability in key descriptors
 Different studies have identified distinct descriptors 

as critical for predicting NP-PC interactions, 
reflecting variations in experimental setups and 
modeling approaches. For instance, Liu et al.,11 
identified APOB as the most significant descriptor 
for correlating gold NP (AuNP) cell associations, 
whereas Papa et al.,18 highlighted hydrodynamic 
diameter after serum exposure and A1AT as key 
predictors. These discrepancies reflect the diversity 
in datasets, NP types, and feature selection methods, 
complicating efforts to establish universally 
important descriptors.

5. In vitro versus in vivo limitations
 Many studies rely on in vitro methods to predict PC 

interactions, which may not accurately represent in vivo 
conditions.10-12,14-21 This discrepancy highlights the need 
for models that better account for the complexities of  
biological environments.

6. Lack of  standardization
 The absence of  standardized protocols for experimental 

procedures and data collection in PC research poses 
a significant barrier to developing robust ML models. 
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Standardization is essential for ensuring the reliability 
and reproducibility of  results. For example, Ban et al.,15 
encountered inconsistent outcomes despite adopting 
rigorous literature review measures, likely due to 
variations in underlying experimental methodologies.

7. Ethical considerations
 Ethical concerns regarding the potential of  ML to displace 

scientists’ roles in research warrant careful consideration.22 
While automation can accelerate discoveries, it is crucial to 
balance technological advancements with the preservation 
of  scientific expertise.

CONCLUSION

The integration of  ML into PC research represents a 
transformative approach, enabling efficient, accurate, 
and scalable analysis of  NP interactions with biological 
systems. Traditional methods such as LC-MS/MS, while 
precise, are limited by their high resource demands, reliance 
on expert operators, and low throughput. ML addresses 
these challenges by leveraging computational power to 
analyze and predict PC dynamics, opening pathways to 
tailor nanomaterial designs for improved drug delivery, 
diagnostics, and toxicity mitigation.

Recent advancements, including supervised learning 
models and RF Classifiers, have showcased promising 
results in correlating PC compositions with biodistribution 
patterns, immune responses, and cellular interactions. 
However, achieving clinical translation requires 
addressing several challenges. These include the 
scarcity of  large, high-quality datasets, the complexity 
of  identifying relevant features amidst noisy data, and 
the variability inherent in biological systems. The need 
for standardized experimental protocols and ethical 
considerations further underline the multidisciplinary 
nature of  the task at hand.

Despite these hurdles, ML’s potential to streamline PC 
research holds great promise. By reducing dependency on 
labor-intensive methodologies, it paves the way for rapid, 
in silico predictions of  NP behaviors in diverse biological 
contexts, thereby accelerating the development of  safer 
and more effective nanomedicines.

FUTURE DIRECTIONS

1. Standardization and protocol development
 Establish universally accepted protocols for data 

collection, NP preparation, and PC isolation to 
improve reproducibility and model reliability.

2. Data expansion and sharing
 Foster international collaboration to create larger, 

more diverse datasets. Open-access repositories could 
enhance data availability and drive innovation.

3. Hybrid approaches
 Combine traditional proteomic methods with ML 

to validate predictions and improve model accuracy, 
particularly in unexplored scenarios.

4. Feature optimization
 Develop methods to identify key features of  protein-

NP interactions, such as surface chemistry, protein 
structure, and environmental conditions, to reduce 
noise and enhance model interpretability.

5. Computational resource management
 Explore cloud computing and distributed systems to 

overcome computational limitations when handling 
large datasets.

6. Interdisciplinary collaboration
 Strengthen ties between biologists, chemists, and data 

scientists to integrate domain-specific insights into 
machine-learning frameworks effectively.

7. Clinical translation frameworks
 Develop pipelines to bridge laboratory findings 

with clinical applications, ensuring that machine-
learning predictions align with real-world biological 
complexities.

8. Ethical considerations and workforce evolution
 Address the ethical implications of  replacing traditional 

roles with ML by fostering reskilling programs 
and highlighting new opportunities in data-driven 
nanomedicine.

By addressing these directions, the field can make 
significant strides toward leveraging ML for practical and 
impactful advancements in PC research, paving the way 
for breakthroughs in nanomedicine.
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