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Nanomaterials, with their diverse biomedical applications spanning drug delivery
to molecular imaging, undergo the adsorption of a protein corona (PC) layer upon
exposure to biological environments. This dynamic layer, shaped by intricate
interactions, significantly influences immune recognition, biodistribution, and
nanoparticle toxicity. Traditional proteomic methods, such as liquid chromatography-
tandem mass spectrometry, are effective but limited by low throughput, high costs,
and the requirement for specialized expertise. The transition from unintentional
PC analysis during polymer evaluations to a deliberate investigation of its role
in drug targeting underscores the need for more efficient analytical approaches.
The integration of machine learning (ML) into PC research has emerged as a
promising solution. This computational methodology, which learns from datasets of
characterized protein layers on specific nanoparticles, offers a more streamlined and
resource-efficient alternative to traditional methods. Recent studies highlight ML’s
ability to predict PC dynamics and biological effects, achieving notable accuracy
in forecasting organ accumulation patterns. However, challenges remain, including
the need for larger and more diverse datasets, significant computational demands,
and the necessity for interdisciplinary collaboration between biologists, chemists,
and data scientists. In addition, the development of standardized experimental
protocols is crucial to ensure reproducibility and comparability across studies. Ethical
considerations, such as potential job displacement in traditional fields, such as
chemistry, also warrant careful attention as ML continues to evolve in this domain.
In summary, while ML shows immense potential to revolutionize PC research,
further refinement of methodologies and enhanced collaboration across disciplines
are essential to fully realize its application in clinical nanomedicine.
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INTRODUCTION

The versatility of nanomaterials and the role of the
protein corona (PC)

The remarkable versatility of nanomaterials has driven their
development for a wide array of biomedical applications,
including drug delivery, precision medicine, vaccines,
molecular imaging, and bio-detection.! When nanopatticles
are introduced into a biological system, a biomolecular
corona forms on their surface. This corona is a dynamic
layer resulting from the interaction of proteins and other

biomolecules with the nanoparticle surface. Its formation
is influenced by multiple factors, such as the concentration
of proteins and nanoparticles, the affinity and structure
of proteins, and the physicochemical properties of the
nanoparticles. This dynamic layer, in turn, profoundly
impacts immune recognition, biodistribution, receptor
interactions, and the local and systemic toxicity of the
nanoparticles.”*

The role of proteins in forming the surface layer of
the corona is particularly critical. Proteins dominate the
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adsorption process, effectively preventing the binding of
other biomolecules to some extent.” Consequently, most
studies focus on the PC. Importantly, the PC is not a
static entity. Some proteins bind reversibly, forming what
is termed the “soft” corona, while others form stronger,
more stable complexes, constituting the “hard” corona.*

For the successful clinical translation of nanoparticle-based
drug delivery systems, it is essential to understand both the
initial formation of the corona and the dynamic changes
it undergoes as the nanoparticle traverses the biological
environment. However, traditional proteomic methods
used to identify the PC, such as liquid chromatography-
tandem mass spectrometry (LC-MS/MS), atre limited by
low throughput, high costs, and the need for highly skilled
personnel.>"

Objective of this work

This review aims to provide a concise overview of
advancements in the use of ML for PC analysis over
the past decade. It examines key findings, highlights the
challenges faced, and explores the potential of ML to
revolutionize our understanding and application of PC
dynamics. What are the critical insights and obstacles in
leveraging ML for PC analysis? This work seeks to address
these questions while shedding light on future directions
in this rapidly evolving field.

RESULTS

Machine learning (IVIL) as a solution

ML offers a promising approach to overcoming the
limitations of traditional proteomic methods. ML is a
computational technique that does not rely on explicit
programming to achieve specific outcomes. Instead, it
learns from existing data to generalize patterns and predict
outcomes for previously unseen data. In the context of PC
analysis, ML models can be trained on datasets comprising
previously characterized PC s on specific nanoparticles.
This enables the development of predictive models that
emulate the decision-making and information-gathering
processes observed in biological systems.’

10 years of ML in PC research

In 2014, Walkey et al., successfully demonstrated that
the PC fingerprint (PCF) provides a more accurate
prediction of cell association than the physicochemical
properties of nanomaterials.'” They synthesized gold
(AuNPs) and silver nanoparticles (AgNPs) and observed
that the core material of the nanoparticles significantly
affects the composition of the PC. Notably, only 36.9%
of the serum PC formed around silver nanoparticles
overlapped with that of gold nanoparticles modified
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with the same surface ligand. The study highlighted that
the specific identities and abundances of proteins within
the corona, rather than the total amount of adsorbed
protein, play a critical role in determining nanoparticle-
cell interactions.

Validation results revealed that a model trained on gold
nanoparticles failed to accurately predict the cell association
of silver nanoparticles, indicating that the relationship
between the PC and cell association is highly dependent on
the nanoparticle core material. Although a combined model
incorporating both gold and silver nanoparticles showed
a slight improvement in prediction accuracy, the overall
performance remained low. Conversely, a model trained
exclusively on silver nanoparticles accurately predicted
their cell association, leading the authors to conclude that
separate models may be required for different nanoparticle
classes based on their PCE.

Furthermore, while the study identified 785 serum proteins
within the PC, only 129 high-abundance proteins were
included in defining the protein fingerprint, with 656 low-
abundance proteins excluded. These excluded proteins,
although not utilized in the model, could still influence cell
association or other biological interactions.

Liu et al., further advanced this work by developing
a model to identify specific serum proteins in the PC
that are most relevant for predicting nanoparticle (NP)
cell association."" To enhance prediction accuracy and
minimize overfitting, the model incorporated only the most
significant parameters. The dataset included 84 gold NPs
(AuNPs) from Walkey et al., library of 105 NPs, excluding
21 NPs due to negligible protein adsorption. In addition,
129 PCFs were omitted due to insufficient data.

Among the descriptors analyzed, apolipoprotein B
(APOB) emerged as the most frequently selected and
had the greatest impact on the correlation with AuNP
cell association. The study also addressed limitations
in validation methodologies, noting that leave-one-out
cross-validation (Q?L.OO), which had been used in earlier
research, can yield overly optimistic estimates of prediction
accuracy, especially for small datasets.

Papa et al., conducted a comparative study to evaluate
multiple MLL models and identify the most effective
approach for PC research.' External validation was
performed by dividing the original dataset into training
and prediction sets, ensuring that the models’ predictive
performance was assessed within a representative domain
for gold NPs (Au-NDPs). Key innovations in this study
included the direct use of spectral counts of high-
abundance serum proteins as experimental descriptors

Asian Journal of Medical Sciences | Mar 2025 | Vol 16 | Issue 3



Y1§in and Ozer: Machine learning in protein corona research

and a comparative analysis of linear versus non-linear
techniques. This methodology provided valuable insights
into the strengths and limitations of various ML-based
approaches, offering alternatives to previously established
models.

The study identified six critical descriptors for modeling
cell association: the hydrodynamic diameter of Au-
NPs after serum exposure, which correlated positively
with increased cell association, and the spectral counts
of five proteins-Alpha 1 Antitrypsin (A1AT), CO4B
(Complement C4B), KNG1 (Kininogen-1), VNTC
(Vitronectin), and glial fibrillary acidic protein (GFAP).
Among these, A1AT, VNTC, and CO4B were found to
enhance cell association, while KNG1 and GFAP served
as inhibitors. Importantly, the roles of A1AT (promoter)
and KNG (inhibitor) were consistent with prior studies,
reinforcing their significance.

Projection pursuit regression, enhanced adaptive regression
through hinges, and random forest (RF) emerged as the
top-performing ML techniques in this analysis. Conversely,
previously developed models by Walkey et al., and Liu et al.,
demonstrated inferior performance. This comprehensive
evaluation emphasized the critical importance of selecting
ML models suited to the specific characteristics of datasets
and research objectives in PC investigations.

Helma et al., explored the optimal combination of
descriptors and ML algorithms for predicting NP
associations, contributing to the field of nanomaterial
informatics.” Utilizing the eNanoMapper online database,
they determined that combining PC descriptors with
a weighted RE algorithm produced the best results, as
measured by root mean square error (RMSE) and R?
metrics. To ensure reproducibility, the study provided
a publicly available, self-contained Docker image that
included all necessary software and data.

However, the study acknowledged certain limitations.
Since cross-validation folds were generated randomly,
replication of the validations might not yield identical
results. In addition, comparing the findings with other
published models was challenging due to differences in
datasets, validation protocols, and performance metrics.
For instance, some studies applied global models to subsets
of the PC dataset and performed feature selection on
the entire dataset before validation, complicating direct
comparisons.

Advancements in PC prediction and their biological
implications

To date, research has largely focused on the relationship
between the PCF and nanomaterial-cell associations,
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but the analysis of these fingerprints has relied on low-
throughput methods. Findlay et al., made a significant
advance by developing a RF model capable of predicting
which proteins would adsorb onto a NP surface, thereby
enabling the prediction of the PCF itself.'””

The model utilized a balanced dataset that incorporated
logarithmic enrichment factors and various protein
properties. However, compared to protein features,
engineered nanomaterial (ENM) and solvent properties
were underrepresented in the training features. This
imbalance arose because variations in ENM and solvent
properties ate challenging to study, as investigating new
ENMs or reaction conditions requires fresh protein-ENM
reactions and proteomics analyses. In addition, key factors
potentially influencing PC formation — such as protein-
protein interactions, ENM surface coating exchanges, and
unmeasured variables, such as ENM shape — were excluded
from the dataset. ENMs with hydrophobic coatings were
also omitted due to solubility issues, limiting the model’s
capacity to evaluate hydrophobicity.

The study observed a strong emphasis on protein
biophysical characteristics over ENM and solvent
characteristics, consistent with earlier findings by Walkey
et al., Within the protein feature set, factors such as the
percentage of hydrophilic and aromatic amino acids and
cysteine content were highly influential, with cysteine
content alone contributing nearly 25%. However, the
limited representation of ENM and solvent properties in
the dataset restricted the ability to draw robust conclusions
about their relative importance. Expanding the database
to include a broader range of ENM and solvent features,
including hydrophobic ENMs, would improve the
model’s applicability and robustness, enabling a more
comprehensive understanding of PC formation drivers.

Lazarovits et al., were the first to employ PCF in an 7z vivo
study, utilizing a neural network to predict the organ
accumulation and clearance of gold NPs (AuNPs) in rats.”
To ensure AuNP stability in blood and extended circulation
times for effective isolation and analysis, the NP surfaces
were saturated with polyethylene glycol. Their experiments
identified five-time points as optimal for achieving the
highest prediction accuracy in the neural network model.

The study found that protein patterns, rather than
individual proteins, dictated the clearance of NPs from
circulation, highlighting the role of the body in altering
NP surface chemistry. AuNPs with extended circulation
times avoided clearance due to the absence of specific
protein combinations required for uptake by the liver and
spleen. Notably, these protein combinations could not be
artificially replicated, underscoring the value of the model.

131



Y1§in and Ozer: Machine learning in protein corona research

ML elucidated this clearance mechanism while leveraging
the body as a bioreactor to develop NP surface chemistries
that evade liver and spleen uptake.

In addition, the researchers noted that NPs of a specific
size represent a Gaussian distribution, with the reported
size reflecting the mean. NPs with closely related mean sizes
may share ovetlapping protein profiles, leading to similar
biodistributions and limiting statistical differentiation.
Improving training and prediction accuracy would require
NP synthesis with sub-nanometer standard deviations — a
challenge under current bulk synthesis methods.

Duan et al,, introduced a RF model incorporating a novel
descriptor, fluorescence change (FC), for predicting the
PCE'™ This approach was tested on a diverse range of
ENMs, including metals, metal oxides, nanocellulose, and
2D materials, demonstrating its broad applicability.

A high-throughput fluorescamine labeling method, which
eliminated the need for washing steps, was employed to
generate the FC descriptor. Traditional physicochemical
properties such as hydrodynamic diameter and zeta
potential were used as benchmarks for comparison, with
FC outperforming these descriptors. The physicochemical
properties of proteins identified in the corona, including
molecular weight, isoelectric point, GRAVY score, and
amino acid composition, were calculated using ProtParam
to supplement the analysis.

A significant finding, consistent with Walkey et al., was the
matetial-dependent performance of the model." Prediction
accuracy improved when the training set included ENMs
with properties similar to those in the test set. For instance,
using cellulose and spherical ENMs in the training set
reduced model accuracy, suggesting that the model’s
applicability domain may be constrained by ENM shape.

Ban et al., compiled the largest database to date for PC
research through an extensive literature review."”” Using
this dataset, they developed a RF model to predict the
composition of the PC layer and its impact on cellular
recognition. However, the model’s performance was
inconsistent; while it successfully predicted the presence
of certain proteins on NP surfaces, accuracy varied
across different cases. These inconsistencies aligned with
previous reports by Duan et al.,'* and Walkey et al.,'” which
highlighted the challenges of creating generalized models
capable of handling diverse ENM types.

The variability in physicochemical properties and
interactions across different nanomaterials likely conttibuted
to Ban et al., model inconsistencies. This underscores the
significant challenge in developing universal predictive
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models for PC composition and its biological implications.
Future efforts should focus on expanding datasets to
capture the diversity of ENM properties and interactions,
thereby enhancing model generalizability and reliability.

Innovative approaches to predicting PC formation
using ML

Yan et al., proposed a groundbreaking approach to
nanomaterial annotation, inspired by facial recognition
technology, to improve the predictive modeling of protein
adsorption on NPs."® This method transformed three-
dimensional nanostructure data into image formats suitable
for convolutional neural network (CNN) analysis. Using a
custom program named “ViINAS,” they processed data from
147 NPs (306 for protein adsorption and 77 for cellular uptake)
into standardized images through Visual Molecular Dynamics
software. Written in a tool command language, the program
streamlined the conversion process, ensuring high efficiency.

The study utilized a CNN model trained on nanostructure
images that integrated features such as core material, size,
surface ligand chemistry, and density, bypassing traditional
descriptors, such as zeta potential and ligand properties. The
model achieved strong performance, with R? values exceeding
0.68 for both 5-fold cross-validation and external validation,
outperforming conventional physicochemical predictors.
Validation methods, including cross-validation, external
testing, and Y-scrambling, confirmed the model’s robustness.

The reliance on image-based nanostructure representations
underscores the potential of this approach to circumvent
traditional experimental measurements, opening a promising
avenue for innovative applications in nanotechnology.

Quassil et al., explored factors influencing protein binding to
single-walled carbon nanotubes (SWCNTSs) and developed
a RF model to predict the end-state PC composition."’
Their findings revealed that proteins with high solvent-
exposed glycine residues or amino acids lacking secondary
structures (e.g, alpha helices or beta sheets) were more
likely to bind to the curved SWCNT surface, suggesting
that structural flexibility enhances binding. Conversely,
proteins rich in leucine or amino acids associated with
planar beta-sheet domains exhibited weaker binding,
indicating that structural rigidity impedes interactions. The
GRAVY score (grand average hydropathy) also emerged
as a key determinant, with lower scores correlating with a
reduced likelihood of PC formation (Figure 1).

The study focused on predicting the final PC composition
rather than the dynamic stages of corona formation.
Although the model accurately predicted the end-state
binding, it struggled to capture intermediate protein
adsorption dynamics, resulting in a poor correlation
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Figure 1: Schematic representation of machine learning development based on protein corona analysis using liquid chromatography-tandem

mass spectrometry. (Reproduced with permission)'723
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Figure 2: Descriptors by Ban et al., with permission.' Bio interactions

between predicted and experimentally observed temporal
protein-SWCNT interactions. Despite these limitations,
the RE classifier provided valuable insights into the
physicochemical factors influencing protein-nanotube
interactions, offering a promising tool for predicting corona
formation across diverse NP systems (Figure 2).

In 2024, Liao et al., addressed imbalanced data distributions
in predicting PC composition, emphasizing the importance
of data quality in enhancing model petformance.” While
prior studies focused on predictive models, Liao et al.,
employed resampling techniques to balance dense and
sparse data distributions, significantly improving prediction
accuracy.
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Three resampling strategies were implemented: Random
Oversampling, Synthetic Minority Oversampling Technique
for Regression, and the Weighted Relevance-based
Combination Strategy. These methods improved dataset
distribution, increasing R* by 0.06 and reducing RMSE
by 0.11. However, the model performed less effectively
for proteins with low relative protein abundance (RPA),
a limitation attributed to competitive adsorption effects.
These findings underscore the critical role of resampling
in addressing data imbalance and improving the predictive
accuracy of PC models.

Finally, Fu et al., conducted a comprehensive study to
predict the RPA of multiple proteins within the PC using
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2014
Walkey et al., 2014: synthesized 121 units
of AuNPs and AgNPs, identifying the
protein corona fingerprint as a superior
descriptor for cellular association

2020
Ban et al. compiled the largest database

(652 units) and attempted to develop a
universal model.

2017
Helma et al. compared multiple models and
identified random forest (RF) as the most
successful model

2020
Yan et al. developed an innovative image-
based model inspired by face recognition
technology

2018
Findlay et al. developed a model, capable of
predicting which proteins will adsorb onto
the corona layer

2022
Quassil et al. developed a model for carbon
nanotubes for the first time

2019
Lazarovits et al. conducted the first iv vivo
machine learning prediction

2024
Liao et al. demonstrated the further
refinement of the random forest model
through data sampling improvements

2020
Duan et al. introduced fluorescence change
as a novel descripter

2024
Fu et al. developed a model to predict the
relative abundance of each prorein
adsorbed onto the corona layer

Figure 3: Key findings from 10 years of machine learning in protein corona research

ML models (Figure 3).* This research uniquely combined
classification and regression tasks to evaluate algorithmic
performance and identify key features influencing RPA
through interpretable analysis. It represents a pioneering
effort to provide interpretable predictions for the RPA of
multiple proteins in the PC.

The Extremely Randomized Trees (ERT) algorithm excelled
in binary classification tasks, accurately predicting whether
a protein adsorbs onto a NP. For regression tasks, RF
achieved the highest R* performance, while ERT minimized
RMSE, demonstrating complementary strengths across
different tasks. Feature importance analysis identified
the NP core material as the most significant determinant
of protein adsorption. In addition, centrifugation speed
emerged as a critical factor in determining the relative
abundance of adsorbed proteins. These results provide
valuable insights into the physicochemical parameters
driving PC formation and highlight the potential of ML
to unravel complex nano

DICUSSION

The importance of predicting PC formation in
nanotechnology

The ability to accurately predict PC formation is critical
for understanding cellular responses, assessing local and
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environmental toxicity, and optimizing the functionality
of nanotechnologies. Although ML has significantly
enhanced predictive efficiency in this domain, further
research and expanded datasets are essential to address
existing challenges.

Current challenges in ML for PC research
1. Material-specific limitations in predictive models

Developing a universal predictive model for diverse
NPs remains a significant challenge due to the
material-specific nature of PC formation. Walkey etal.,
demonstrated that the core material of NPs (e.g;, gold
vs. silver) strongly influences PC composition, with
minimal overtlap observed between similar NPs.!’ Their
findings revealed that models trained on one NP type
often fail to predict cell associations for other types,
underscoring the dependency on NP material.

Similatly, the model developed by Ban et al., faced
inconsistent performance, despite leveraging a diverse
dataset comprising various ENMs.17 This variability
reflects the differences in physicochemical properties
and interactions among ENMs, complicating the
creation of generalized models. Duan et al., further
highlighted the issue, showing reduced model
accuracy when training and test datasets involved
NPs with differing shapes or properties.'* These
findings collectively emphasize the necessity of
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tailored or hybrid modeling approaches to address the
heterogeneity of NP types (Table 1).

Variability in performance metrics

The use of inconsistent performance metrics in PC
ML studies hinders direct comparisons across research.
Liu et al., critiqued the reliance on leave-one-out
cross-validation, noting its tendency to produce overly
optimistic accuracy estimates, particularly for small
datasets." This metric evaluates model performance
using subsets of data that may not be sufficiently
independent from the training set, increasing the risk
of overfitting (Table 2).

Dependence on secondary data sources

Many researchers rely on data from published studies
rather than conducting independent NP synthesis
or purchasing materials from established suppliers.
This approach, driven by the complexity and expense
of generating new datasets, is exemplified by Ban
et al.,, who compiled the largest PC database to
date by aggregating literature data.”® Similarly, Yan
et al,, converted data from 147 NPs into image-based
formats for CNN analysis.'®

While leveraging existing datasets reduces the time and
resources required, it also introduces challenges such as
dataset inconsistencies, reporting biases, and a lack of
standardization. These issues can compromise model
reliability and generalizability, underscoring the need
for transparent reporting and harmonized protocols
to enable robust model development and meaningful
comparisons.

Variability in key descriptors

Different studies have identified distinct descriptors
as critical for predicting NP-PC interactions,
reflecting variations in experimental setups and
modeling approaches. For instance, Liu et al.,"!
identified APOB as the most significant descriptor
for correlating gold NP (AuNP) cell associations,
whereas Papa et al.,'® highlighted hydrodynamic
diameter after serum exposure and A1AT as key
predictors. These discrepancies reflect the diversity
in datasets, NP types, and feature selection methods,
complicating efforts to establish universally
important descriptors.

In vitro versus in vivo limitations

Many studies rely on in vitro methods to predict PC
interactions, which may not accurately represent 7z vivo
conditions."™*"**! This discrepancy highlights the need
for models that better account for the complexities of
biological environments.

Lack of standardization

The absence of standardized protocols for experimental
procedures and data collection in PC research poses
a significant barrier to developing robust ML models.
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Type of Data

Inc. Envir./Cell Lines

Descriptors (Detailed)

Dataset

Materials

Refs

« All adsorbed proteins (Protein corona fingerprint) * Human serum » Experimental

* Relative abundance of individual proteins

 Hyaluronan-binding proteins
» Physicochemical properties:

» Self-made

» Surface modified gold NPs with

Walkey et al.

[10]

* A549 human lung

121 units

15, 30, 60 nm cores
« Surface modified silver NPs with core size

epithelial carcinoma

cells

of approximately 40 nm
« 67 different anionic, cationic or neutral

« Size: NP core size and hydrodynamic diameter

« Surface charge: Zeta potential

» Aggregation state

ligands attached to both type NPs

« Localized surface plasmon resonance index

« Total adsorbed protein density

* Protein characteristics:

« Literature

* Isolated soluble

« 6 units from

» 10 and 100 nm sizes of Ag NPs

Findlay et al.

[14]

review

protein from 1 L BY4

yeast cells

« Isoelectric point (pl), Protein weight (MW), Protein

Eigenheer

et al.

» Two different surface coatings were used:

abundance, % Positive charged AAs, % Negative

anionic citrate and cationic branched
polyethylenimine (BPEI)- coated NPs

charged AAs, % Hydrophilic AAs, % Aromatic AAs, %

Cysteine AA

» Physicochemical properties
» Size, Surface charge

« Solvent characteristics

» Cysteine concentration, NaCl concentration

(Contd..)
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Standardization is essential for ensuring the reliability
and reproducibility of results. For example, Ban et al.,””
encountered inconsistent outcomes despite adopting
rigorous literature review measures, likely due to
variations in undetlying experimental methodologies.
7. Ethical considerations

Ethical concerns regarding the potential of ML to displace
scientists’ roles in tesearch warrant careful consideration.?
While automation can accelerate discoveties, it is crucial to
balance technological advancements with the preservation
of scientific expertise.

CONCLUSION

The integration of ML into PC research represents a
transformative approach, enabling efficient, accurate,
and scalable analysis of NP interactions with biological
systems. Traditional methods such as LC-MS/MS, while
precise, are limited by their high resource demands, reliance
on expert operators, and low throughput. ML addresses
these challenges by leveraging computational power to
analyze and predict PC dynamics, opening pathways to
tailor nanomaterial designs for improved drug delivery,
diagnostics, and toxicity mitigation.

Recent advancements, including supervised learning
models and RF Classifiers, have showcased promising
results in correlating PC compositions with biodistribution
patterns, immune responses, and cellular interactions.
However, achieving clinical translation requires
addressing several challenges. These include the
scarcity of large, high-quality datasets, the complexity
of identifying relevant features amidst noisy data, and
the variability inherent in biological systems. The need
for standardized experimental protocols and ethical
considerations further underline the multidisciplinary
nature of the task at hand.

Despite these hurdles, ML’s potential to streamline PC
research holds great promise. By reducing dependency on
labor-intensive methodologies, it paves the way for rapid,
in stlico predictions of NP behaviors in diverse biological
contexts, thereby accelerating the development of safer
and more effective nanomedicines.

FUTURE DIRECTIONS

1. Standardization and protocol development
Establish universally accepted protocols for data
collection, NP preparation, and PC isolation to
improve reproducibility and model reliability.

2. Data expansion and sharing
Foster international collaboration to create larger,
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more diverse datasets. Open-access repositories could
enhance data availability and drive innovation.

3. Hybrid approaches
Combine traditional proteomic methods with ML
to validate predictions and improve model accuracy,
particulatly in unexplored scenarios.

4. Teature optimization
Develop methods to identify key features of protein-
NP interactions, such as surface chemistry, protein
structure, and environmental conditions, to reduce
noise and enhance model interpretability.

5. Computational resource management
Explore cloud computing and distributed systems to
overcome computational limitations when handling
large datasets.

6. Interdisciplinary collaboration
Strengthen ties between biologists, chemists, and data
scientists to integrate domain-specific insights into
machine-learning frameworks effectively.

7. Clinical translation frameworks
Develop pipelines to bridge laboratory findings
with clinical applications, ensuring that machine-
learning predictions align with real-world biological
complexities.

8. Ethical considerations and workforce evolution
Address the ethical implications of replacing traditional
roles with ML by fostering reskilling programs
and highlighting new opportunities in data-driven
nanomedicine.

By addressing these directions, the field can make
significant strides toward leveraging ML for practical and
impactful advancements in PC research, paving the way
for breakthroughs in nanomedicine.
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